Taraszow O.G.
Central Institute of Cybernetics
and Information Processes
Berlin, GDR
ENUMERATION OF ACYCLIC SUPERTOURNAMENTS
OF A FINITE LABELED ACYCLIC DIGRAPH.

Let G denote a finite, labeled, acyclic digraph. We define a tournament a complete oriented graph. A tournament which is a spanning subgraph of a given digraph is called a supertournament of this digraph. Let t(G) be the number of all different acyclic supertournaments of G.

A recurrent method of canceling cycles of a digraph is presented. Using this method we show

recorem 1. For any finite, labeled, acyclic digraph G the problem of calculating t(G) is reducible to the case of finite, labeled, oriented rooted trees.

Let V(G) be the set of vertices of a digraph G and let T denote a finite, labeled, oriented rooted tree. $\forall x \in V(T)$ let T_x be the maximal, oriented, rooted subtree with the root x in T.

Theorem 2.
$$t(T) = |V(T)|! / \prod_{X \in V(T)} |V(T_X)|$$

Furthermore, two families of upper bounds are deduced. $\underline{\text{Lemma}}. \ (G_{\mathbf{x}} \subseteq G \subseteq G^{\mathbf{x}}) \land (V(G_{\mathbf{x}}) = V(G) = V(G^{\mathbf{x}})) \Longrightarrow t(G^{\mathbf{x}}) \leqslant t(G) \leqslant t(G_{\mathbf{x}}).$

Let T/G/ denote an oriented, rooted spanning tree of a weakly connected digraph G and let $I_n = \{1, 2, ..., n\}$.

Theorem 3.
$$\forall T/G/: t(G) \leq |V(G)|!/\sum_{x \in V(G)} |V(T_x/G/)|$$

A minimal Dilworth decomposition of G is defined as follows: $q(\mbox{\ensuremath{\mbox{G}}})$

$$V(G) = \bigcup_{i=1}^{q(G)} V(C_i); \quad \forall i \neq j: \quad V(C_i) \cap V(C_j) = \emptyset,$$

where the C_{i} are paths of the transitive closure \bar{G} and q(G) is the maximal defiency of G.

Theorem 4. Let G be a finite, labeled, acyclic, weakly connected digraph with exactly one initial vertex $b \in V(G)$. Then, for any minimal Dilworth decomposition of G we have

$$t(G) \leqslant \frac{(|V(G)| - 1)!}{(|V(C_p)| - 1)!} \bigcap_{\substack{i=1 \ i \neq p}}^{q(G)} |V(C_i)|!$$

where $b \in V(C_p)$, $p \in I_{q(G)}$.