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ABSTRACT

We study the problem of the determination of the
number 7(G) of all different topological sortings of an
acyclic digraphs G. It is shown that the original
problem can be reduced to the case of directed trees by
the application successively of the proposed method for
the removal of cycles. The answer for directed trees is
given in an analytical form. Two families of upper
bounds are derived for the number = (G), too. The first
one originates from the set of spanning trees of G, and
the second one is based on the set of minimal Dilworth
decompositions of G. It is shown that the first family
of upper bounds is tight.

1. INTRODUCTION.

We study the determination of such invariant of a finite
acyclic digraph as the number of its topological sortings.

Let ¢ = (V,E) be a finite, acyclic digraph with sets V(G) and
E(G) of vertices and edges, respectively, and n := [V(G) |,
0,:= {1,2,...,n}.

A topological sorting of G is a mapping ¢ : 1 — V(G) such
that holds

(Vi,J el)) : (e(i),e(j)) € E(G) = i < j. (1)




Problem 1 (enumeration of topological sortings)
GIVEN: A finite, acyclic digraph G with n vertices.

FIND: The number 7(G) of topological sortings of G.

Now we present three another problems that are equivalent to
the problem 1 (for more details see Taraszow [1-2]).

A tournament is a complete, oriented graph.

A supertournament of an acyclic digraph G is a tournament such

that the digraph G is a spanning subdigraph of this tournament.

Problem 2 (enumeration of supertournaments)
GIVEN: A finite, acyclic digraph G with n vertices.
FIND: The number 7 (G) of supertournaments of G.

Let R = X x X be a partial order relation defined on the set X

with n distinct elements,i.e.

(a) RME =E - reflexivity,
(b) R nR™! = @ - anti-symmetry,
(c) R? < R - transitivity.

A partial order R € X x X is a linear order iff holds

Ru R =x2,

A linear extension of R is a linear order L € X x X such that
holds R < L.

Problem 3 (enumeration of linear extensions)

GIVEN: A partial order R € X x X on the set X with n distinct
elements.

FIND: The number v (R) of linear extensions of R.

Let X = o and R € o, x0, a strict partial order, i.e.
RNE=0 RAR ' =@, and R?

called admissible concerning R iff holds

<€ R. A permutation  : LT is

w(1)Ry(j) == i < j.
Problem 4 (enumeration of admissible permutations)
GIVEN: A strict partial order R = 0, x 0.
FIND: The number 7(R) of admissible permutations concerning R.




2. REsULTs.

In this session we give some results for the determination of
the number of topological sortings of a finite, acyclic digraph.
These results were obtained for different problem formulations,
but are given here 1in corresponding reformulations for the
problem 1.

Let G be a finite, acyclic digraph G with

n
Uegc.,, (2)
j=1

G

where Gi(i 1,2,...n) are weakly connected components of G.

Theorem 1.
n

n T(Gi)
r[ U Gi] = Ve TT ————— (3)
i=1 s=1 IV(EH !

For the proof see Tanaev and Skurba [1].m
-
Let G be the transitive closure and G the basis graph of @G,

respectively.

Lemma 1.
- ~
(Gl = Gz) & (Gl = Gz) = T(Gl) = T(G2)° (4)
For the proof see Sidorenko [2]. m

Let r € E(G). We denote by G-r and G/r the digraphs resulting
from G by canceling the arc r and by changing the orientation of
the arc r, respectively.

Lemma 2. VY r € E(G): 7(G) = 7(G-r) + 7(G/T). (5)
For the proof see Taraszow [3]. =

Let odG(x) and idG(x) denote the outdegree and the indegree of
a vertex X € V(G) in a graph G, respectively. For a circuit L of
G (L = G) the vertices b € V(G) and e « V(G), respectively, are
initial and terminal vertices of L iff idL(b) = 0 and odL(e) = 0,
respectively.

Let L be a simple circuit of an acyclic digraph G. Now we
label the arcs of L as follows. Starting with any terminal vertex




e € V(L) we label counterclockwise with 1,2,...,m all clockwise
oriented arcs of L. BAnalogously, starting with the terminal
vertex e € V(L) we label clockwise with -1,-2,...,-n all counter-
clockwise oriented arcs of L. Here m and n are the numbers of
clockwise and counterclockwise oriented arcs, respectively.

Let L; be the circuit resulting from L by changing the
orientation of |i| arcs of L labeled with 1,2,...,i if i 2 0 and
with -1,-2,...,i if i < 0. We *denote then by Ly the digraph
originating from the circuit L, by eliminating the arc with the
label i. The digraph G/Liresults from G by exchanging of L for Li'

Theorem 2 (circuits elimination)

For any simple circuit L (if L exists) of a finite, acyclic
digraph G holds

m
1 i+1
w(€) = 3 ) 1M r(erny). (6)
i=-n
For the proof see Taraszow [3]. m

Theorem 3. For any finite, acyclic digraph G the problem of the
determination of 7v(G) can be reduced to the case of
finite, directed, rooted trees using successively the
circuits elimination.

For the proof see Taraszow [4]. m

Let T be a finite, directed, rooted tree and Tx denote for any
X € V(T) the maximal subtree in T with the root x.

Theorem 4.
jv(T)| !
=(T) = (7)

T T Iv(T,) |

xeV(T)

For the proof see Taraszow [3]. =

Let Tp q be a finite, rooted, regular, oriented tree of a
I
degree p and a level g (p,q € N)
Corollary.
pd-1
5T (P ! L RPN
T = (p- ! - .
(T, o) = (P-1) 5= /TTw 1) (8)

i=1




Let T[G] denote an oriented, rooted, spanning tree of a weakly
connected digraph G.

Theorem 5. Let G be a finite, acyclic, weakly connected digraph
with exactly one initial vertex and T[G] be the such oriented,
rooted, spanning tree of G that holds G = T[G]. Then

|v(Gg)] !
7(G) = (9)
T T V(T [6])]

xeV(T)

For the proof see Taraszow [3]. =m

3. TWO FAMILIES OF UPPER BOUNDS.

In this session we give two analytical families of upper
bounds for 7(G). The first one originates from the set of
spanning trees of G while the second one is based on the set of
minimal Dilworth decompositions of G. If G is a directed tree,
the first family of upper bounds provides the exact number =(G).

Lemma 3.
(G, G <6°) A (V(G,) = V(G) = V(C")) = 7(C") = <(G) = <(G,).

For the proof see Taraszow [4]. =

Theorem 6. Let G be a finite, labeled, acyclic, weakly connected
digraph with exactly one initial vertex. Then for any its
rooted spanning tree holds

|v(e) | !
T(G) < (10)
T T V(T [6])]

X<V (T)

For the proof see Taraszow [4]. =

Let N(G) denote the set of independent sets of a digraph G,
and g(G) the vertex number of maximal independent sets of G, i.e.




N(G):= { X = V(G) | (¥x,¥y « X)((x,Y) & E(G)) N ((y,X) = E(G)))},

and
da(G) = max |X].
XeN(G)

A minimal Dilworth decomposition of an acyclic digraph G is a
such set © = {Cl’cz""’cq(G)} of paths Ci(l =1,2,...,9(G)) of G
that holds

q(G)
vV(G) = U V(Ci) and Vv i= 3j : V(Ci) M V(Cj) = @.
1=

Theorem 7. For an arbitrary minimal Dilworth decomposition
D={C1,C2,...,Cq(G)} of a finite, acyclic, weakly connected
digraph with exactly one initial b e V(Cp) holds

[V(e) - 1)|! a(€)

7(G) = // TT Ivicy) | (11)
Iv(c,) - D! o
i=p

For the proof see Taraszow [3]. =
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