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1.Introduction

The multiprocessor gystem MPS was developed at the ZKI. It has
been described in /Ber80/. It consists of a control computer and
signal processors as processing elements. There exists different
possibilities to program the MPS.

In this paper an approach for semiautomatic parallelization of
sequential programs for the MPS is presented. The kernel of
parallelization is a multiprocessor scheduler. The criterion for
parallelization is to minimize the total processing time of the
program with respect to the cost of data transport.

One can find & wide range of methods for automated program
napping among others in /S5al83/.

Fig.1l. ghows the principal paradigma of our investigations:

First a dataflow analyzer generates the dataflow graph (DFG) of
the sequential program. Then the program is partiticned into
tasks corresponding to the dataflow and resulting data
dependencies. Next the DFG has to be weighted. An evaluator
assesses expected running time of tasks and data transport
regquirements. Last the target program package is generated by
the maltiprocessor scheduler.

2.Multiprocessor model

The model Q@ of the MPS is a wheel-like model. The control
computer 1is located in the center of the wheel. The processing
elements are configured around the control computer like a ring.
Each pProcessor is coupled to its neighbor by a local
communication memory. For each processing element exists local
resources. They consist of a data memory, a program memory and
the communication memory. They are controlled by the control
computer. The MPS is symmetrically,homogenously and scalable. See
fig.2.

The tasks are processed on a processor in time slices. During a
time slice all processing elements work on their assigned task
and wait until the last processor has finished its work (barrier
synchronization).



8 processor can accept two states: active or non-active. If a

processor is active, it can ©process either a task or a
communication routine to provide data transport. All processing
elements are able to work in SPMD-mode (single program on

maltiple data) or MPMD-mode (maltiple program on wmultiple data).
To start a task on a processing element, the local environment of
that processor mast contain all data needed for the execution of
the task. The processing is non-preemptive.
Following restrictions are relevant for the MPS:
- capacities of control computer memory,
program memory,
data memory
and commanication memory,
- overhead time for the control computer,
- necessary time for data transport between local meories per
memory unit,
- necessary time for data transport between control computer and
local memories per memory unit.

3.The data flow graph

The dataflow graph 1is a finite, acyclic, weighted digraph
G=(V,E). Vc N, E ¢ V=,

The set of nodes V represent. tasks and the set of edges E
represent the dependencies between tasks. The DFG contains one
sgtart node and one end node. They are considered as start routine
and final routine of the control computer.

Following functions are given to assign weights to the DFG:

g: V --> R . memory requirement of a task (node weight),

f: E --> R , amount of data *to be transported from start
node to end node of an edge (edge weight),

l: V --> R, expected runtime of tagks (node weight).

4 .The multiprocessor scheduler

Suppose that the DFG is given.

We construct a static, non-preemptive schedule with three parts:
The first one is the decomposition of the DFG, the second one
consists of the +transformation of the graph into a MPS-like
structure and the last part realizes the allocation of tasks onto
ProCcegsors.

Let ® be a mapping

$: G --> Q@ with

¢ = (a,B), a: V(G) --> V(Q) and
B: E(G) --> Q(Q).

Q(Q) is the set of all pathes in Q.

202



Then is
@ =T * p e o, with T representing the allocation,
B representing the transformation,
o representing the decomposition.
4.1. The decomposition
Given the graph G=(V,E) and the functions f and g.
Def.1. A pode weight constraint is a real number ¢ € R with

2 g(v) >c and g(v) £ ¢ for all v € V.
vev

Def.2. A family D={d} of non-empty subsets of V are said to be =
decomposition of ¥ if and only if

a) Ud=v
deD

b) for all d,d” € D: d $£d° ==> d Nd =g,

Def.3. A decomposition is said to be admiseible if and only if
for all d € D

Z g(v) £c.
vev

Assume that G'=(D,E") is a graph and D is a decomposition of V.
For any d,d” € D :

(d,d") € E* : <==> (Jved,Jv'ed” | (v,v’) € E).

G° is the clustergraph of G. The nodes of G° are said to be
clusters.

Def.4. The weight "€(d) of a cluster d is the sum of weights of
all inner edges of d.
The weight of the decomposition D is the function

z(D) = Z w(d).
deD

Def.5. An ophimal decomposition is an admissible decomposition
with a maximal value z(D).

The problem of the first part of the scheduler is to locking for
a mapping o from G onto G° so that D becomes an optimal
decomposition of V(G).



We can give an interpretation of the formal task:

The criterion for optimization is to minimize data transport
between clusters of DFG-tasks. It is possible to process all
nodes of a cluster with smwall communication rate to its outside
world in one processor. The decompogition concentrates tasks with
high communication rate inside the clusters. The communication
cost are zero in a cluster.

The condition for an admissible decomposition is a constraint
equivalent to the possible cluster size. It is the sum of program
memory demand of tasks belonging to the cluster. The sum is
restricted by the program memory capacity of a processor.

We solved the problem of decomposition with an adapted branch-
and-bound algorithm given by H.Widjaja /WidB2/.

4.2.Transformation

Each transformation p corresponds to a specific multiprocessor
model and vice versa.
Assume that
a) the number of clusters is less than the number of processors,
b) data transport will not be realized by the control computer
due to its high communication cost.
Now the cluster graph G° is transformed into a MPS-like
structure.
First we construct a circle containing the maximum possible
number of resulting clusters; (It may be a Hamiltonian circle):
Therefore we have +to find a basis circle. Then all suitable
clusters are inserted in the circle. A suitable cluster outside
the <circle 1is either adjacent to exact any two neighboring
clusters of the circle or there exists a path between any two
circle clusters containing this cluster.
In a second step we insert all remaining <lusters into the
circle:
Let there be a cluster d outside the current circle. d is
adjoined to non-neighboring circle cluster. d changes to a circle
cluster regard to small total data transport cost of the current
circle. Copy nodes, representing data transport, will be inserted
to all circle clusters placed between d and it s neighbors in the
circle. The copy nodes will be connected in the correct order by
edges. The original edges will be deleted. Their weights are
assigned to the corresponding edges between copy nodes.
The third step provides the insertion of =&ll remaining, non-
processed edges of circle clusters considering small cost for
data transport too.
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4.3.Allocation

The arising circle of 4.2. is assigned to the processor ring,
taken into account the utilization of the MPS and the requirement
of small data transport cost.

Obviously its either necessary to insert additional clusters
consisting of copy nodes. They are allocated to available
processors without tasks assigned to them. Or its necessary to
split some clusters to utilize more or all proceesing elements.
We have to find a good compromise between the two aspects
menticoned above. If the number of clusters is equal to the number
of processors the allocation is trivial.

If every cluster is assigned to a processor, we determine the
order of task processing of any cluster. The methed of searching
nodes without predecessors in the DFG expanding by copy nodes is
the most promising approach.
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