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In many practical situations, connection structures have to be laid out in an environment with
a strong inner structure. This article presents a new general mathematical formulation of cor-
responding design problems in which the layout possibilities are represented by a network.
Because in practice such networks are often very large and sparse, there is great interest in the
utilization of decomposition techniques for the optimization of connection structures. New decom-
position methods for the determination of optimal paths without interference (independent decom-
position), of k node-disjoint paths with minimal total costs and of optimal Steiner trees are
presented. The new methods are compared with other techniques under different aspects of
practical importance.

1. INTRODUCTION

Many practical design problems regard the optimization of structures connecting a
set of given points in the two- or three-dimensional Euclidean Space. This article
considers those cases in which only a finite number of essentially different admissible
paths between any two given points exists. Then it is reasonable to embed a network
as a model of the routing, branching, and placement possibilities in the region in which
connection structures have to be laid out. Such situations arise in transport optimization,
routing of pipelines and cable connections in environments with intense inherent struc-
ture and in other fields (see also [1, 2, 3]).

The entire network that represents routing, placement, and branching possibilities
for the layout of connection structures may be very large. In an industrial site, for
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FIG. 1. Different connection structures in a fictive network representing layout possibilities
in an industrial site.

instance, there are networks with hundreds to thousands of edges each representing a
point-to-point connection already prepared or at least suitable for the installation of
cables [3]. These networks are always sparse.

In many practical situations, connection structures of different kind must be laid out
in one and the same sparse large-scale network. Often at least some of these structures
have to connect nodes being located within relatively small regions of the entire
network. Figure 1 illustrates a simple example of such a situation in which a set of
noninteracting point-to-point connections, a star net, a Steiner tree, and two node-
disjoint paths are marked as design results.

In the situations described above the computational effort for the optimization of
connection structures can be generally significantly reduced by network decomposition
techniques. This has already been utilized for the determination of all optimal paths
in a graph ([4-9], e.g.). Based on the correspondence between this problem and the
solution of linear algebraic systems [10] sparse matrix techniques have been applied
(8, 9].

Section 2 of this article regards decomposition techniques for the determination of
optimal paths. In Subsection 2.2, a new method is described.
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More complex structures than paths represent an even stronger challenge for the
application of network decomposition. In Section 3 we describe methods for the decom-
position of the entire network into two parts, one being sufficient for the solution of
the layout-optimization problem, the other being absolutely irrelevant for that purpose.
Such techniques are especially important in those cases in which the structures to be
laid out have to connect nodes located in relatively small regions of large-scale net-
works. The proposed algorithms answer the question which parts of the network can
be eliminated without loss of the optimal solution of the original problem.

In Section 4, the different methods described in the article are compared with respect
to such characteristics as suitable applications, implementation effort, storage require-
ments, computational effort, and typical man—-machine interaction possibilities within
the entire problem-solving process.

As an outlook on future research work the last section contains a formal generalization
of optimization problems regarding the layout of connection structures in environments
with pronounced inner structure.

In the more formal parts of this paper the network representing the layout possibilities
in such environments is called graph (or digraph) G.

2. DECOMPOSITION METHODS FOR THE DETERMINATION OF
OPTIMAL PATHS IN GRAPHS

2.1. Decomposition without Optimality Properties

In the practical applications characterized in Section 1 the occurring graphs are far
from being completely connected. Decomposition techniques can take advantage of
this fact. At first we consider a very simple situation:

Let Y, be a subset of the nodes of a given digraph G = (¥, W) with the set of vertices
and arcs Y = V(G) and W = E(G), respectively:

Y, CY = V().

By X we denote the set of all nodes of G which are neighbors of nodes of Y;, but do
not belong to Y,. Finally we define

Y, = (Y\Y)\X.

Obviously X is a cut set: If the nodes of X and the arcs directed from or to elements
of X to or from elements of Y\X are removed from G, G is decomposed into the two
nonoverlapping parts G, and G, with V(G,) = Y, and V(G,) = Y,, respectively (see
Fig. 2 for the case of undirected graphs). _

Now we define two overlapping digraphs 51 = (Y,,Wl) and 52 = ()_’Z,V—Vz) which
result if the node sets of G, and G, are both extended by X and if W, and Wz contain
all arcs of G connecting elements of ¥, U X and Y, U X, respectively.

Let us look at the optimal path problem on G for a given node cut set X. If no
further properties than the above described are imposed on the decomposition, for the
determination of an optimal path between two vertices of G, we have to consider also
G, and vice versa. The fundamental idea of the decomposition described in this sub-
section lies in a successive execution of path-finding algorithms in subgraphs of G.
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FIG. 2. (a) A decomposition of G by the cut set X (elements of X are represented by squares).
(b) Graph G, with edges (dotted lines) representing optimal paths between all elements of X in

Gz-

Such an organization of the optimization can be utilized for a reduction of both the
necessary computation time and memory space. Consider, for instance, the problem
of finding an optimal path between y; € Y, and y; € Y,. At first within G, the optimal
paths from every vertex of X to all other vertices of this set are determined. Then
G, is modified in the following way: All arcs connecting vertices of X with each other
are eliminated from 5.. Then for every ordered pair (x;,x;) of vertices of X for which
a path from x; to x; exists in G, we add to G, one arc representing an optimal path
from x; to x; in G, and being weighted by its cost (see Fig. 2 for the case of an undirected
graph). The resulting graph is called G,. Now we are able to solve the optimal path
problem with respect to the entire digraph G considering only graph G_, .

The described procedure provides optimal paths between elements of Y, and between
elements of Y,. If we look for an optimal path from y; € ¥, and y; € Y, we obviously
have to perform the following minimization

d(yoy;) = rr}:_l;l [d(yix) + d(x,y;)] (D
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TABLE 1. Short characterizations of some well-known optimal path algorithms not using
decomposition methods. :

Purpose of the Approximate Number
Author Algorithm of Operations Reference
Dijkstra Determination of the optimal OW?Y [13]

paths from one source node
to all other nodes in a net-
work with nonnegative

weights
Yen as Dijkstra’s algorithm OWNY [11]
(less than Dijkstra’s algo-
rithm)
Bellmann as Dijkstra’s algorithm, but OM, - N [14]
negative weights admissible
Yen as Bellman’s algorithm OM, - N*? (15]
(less than Bellman’s algo-
rithm)
Floyd Simultaneous determination O(N?) [16]
of all optimal paths in a
network with negative
weights admissible
Spira as Floyd’s algorithm, but O(N*(log N) (17]
negative weights are not
admissible

*M, and M, lie between | and N — 1, depending on the particular network.

where d(y;,y;) with y;, y; € Y are the costs of an optimal path from y; to y; with respect
to the entire digraph G.

Thus, it is sufficient to solve optimal path problems successively only on both of
the subnetworks and to carry out minimization (1). In the case of a proper choice of
. the cut set and sufficiently large sparse networks already this simple decomposition
leads to a significant reduction of necessary memory space and computation time. The
reason for the potential reduction of computer time lies in the fact that the computational
effort for the determination of optimal paths in a network with N nodes generally
increases faster than linearly with rising N. Table I illustrates the computational effi-
ciency of some well-known powerful optimal path algorithms that do not use decom-
position. More detailed comparisons can be found, e.g., in [11, 12].

Of course, regarding computer time a decomposition is most beneficial if all or at
least many optimal paths have to be determined.

The described algorithm that goes back to Hu [4] can be extended in the direction
of a more general decomposition. In [4] a cascade and a hierarchical cascade decom-
position are proposed. By a cascade decomposition a network is decomposed into a
number of subnetworks in such a way that the ‘‘inner’’ subnetworks overlap only with
two others and the two ‘‘outer’’ subnetworks overlap only with one subnetwork each
(Fig. 3).

In the case of a hierarchical cascade decomposition at least one of the resulting
subnetworks is further decomposed into a cascade structure.
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FIG. 3. Example of a cascade decomposition.

2.2. Decomposition by Optimal Paths

The method for the determination of optimal paths in a network described in Section
2.1 does not answer the essential question how to choose the cut sets. In fact, in [4]
the effort for the decomposition of the entire network into a proper set of subnetworks
was not considered in the efficiency analysis. In certain practical situations, for instance,
if we investigate large planar networks and have a graphical representation of them at
hand, it may be relatively easy to choose proper cut sets manually. In such situations
it is an advantage of the method of Hu, to permit, in principle, an arbitrary cascade
decomposition.

On the other hand, especially in more complex applications we are interested in a
fully computerized method without interaction by man defining the cut sets. In [6] and
[7] a Dynamic Programming procedure for an optimal decomposition is described
which supplies for appropriately chosen integers m (number of subnetworks) and K
(maximum number of nodes in each subnet) a minimal number of elements in the union
of all node cut sets. The term optimal is used there in a similar sense as in control
theory: The solution is optimal with respect to an initial state given by an initial guess
of m vertices which represent ‘‘crystal nuclei’’ for the m subnets. Thus, the deter-
mination of an optimal solution with respect to all possible initializations can be rather
time consuming.

In this section we present another algorithm for the calculation of optimal paths in
which certain optimal paths themselves are used for an algorithmic decomposition.
Thus, the computational effort for the decomposition is fairly moderate in comparison
with the method described in [6, 7]. Furthermore, the algorithm eliminates the necessity
to determine optimal paths additionally in G, if we look for such routes in G, to speak
in terms of a decomposition into two subnetworks as illustrated in Figure 2. The
algorithm is effectively applicable to the determination of all or at least many optimal
paths in large planar networks, and in special other cases.

In the following we assume that graph G in which we look for optimal paths is
undirected. A generalization to digraphs is possible only in very special cases. At first
we introduce some terms regarding a sequence of special optimal paths.
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Definition 1. A first level optimal border is an optimal path between two nodes of
graph G decomposing this graph into at least two nonoverlapping subgraphs if it is
eliminated from G. The corresponding subgraphs overlapping on the optimal border
are called first-level subnets.

Definition 2. A kth level optimal border (k > 1) is an optimal path between two
nodes of a (k — 1)-th level subnet representing a first-level optimal border with respect
to this subnet. The resulting subgraphs overlapping on the optimal border are called
kth-level subnets.

Definition 3. An independent decomposition of an undirected graph G is a successive
partition of G and the resulting subnets by optimal borders.

Figure 4 shows a simple typical example of an independent decomposition. At first
the entire network is decomposed into two subnets by a first level optimal border
stretching from one boundary node to another. Then one of the resulting first-level
subnets is further decomposed by a second-level optimal border connecting a boundary
node with a node on the first-level optimal border.

The level of an optimal border may depend on the sequence in which a network is
decomposed by such borders.

first level
optimal border

/ subnet ~—
' ﬁI‘St - \\
level subnet \\
\ g /]
K
\ /
. /

second level
optimal border

.\.
\~ second level T

- _Subnet .

O ! ’ary NEees

FIG. 4. Independent decomposition by a first- and a second-level optimal border sharing one
node of the network.
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Optimal border

R=A,a R=b,C,c ReF
BB B=D,d,E

FIG. 5. Example of a path with degree 2 with respect to an optimal border.

Definition 4. A path p(v;,v;) in G = (Y,W), represented by the sequence of contig-
uous nodes and edges

Vis €ps Vigs €y« « + s Vi, €,_, Vi 2)
v, €Y (s=1,...,r)
e, €EW t=1,...,r—1),

has degree n = 1 with respect to an optimal border B (also represented by a sequence
of contiguous nodes and edges), if sequence (2) can be divided into a sequence of
segments

P,P,P,, P, ..., P, P, P,
where each P, (i = 1, . . ., n) coincides with some segment of B, no element of P,
(i=1,...,n + 1)belongs to B, and only P, and P,,, may be empty (Fig. 5).

Lemma 1. If a path between two nodes of one and the same subnet resulting from
an independent decomposition does not remain entirely inside this subnet it has a degree
n > | with respect to at least one optimal border.

Proof. We prove this lemma by complete induction.

Consider a first level optimal border B and one of the resulting first-level subnets
G,V in which the starting and destination node of a path may be located. Because the
optimal border by definition decomposes the entire network, a path leaving G/ must
obviously have a degree n > 1 with respect to B‘".

Assume that the lemma is right for a kth-level subnet. Now we consider paths between
two nodes of one and the same (k + 1)-th level subnet G**" (k = 1). By Definition
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2 this subnet is part of a kth-level subnet, say, G{¥, which is decomposed by a (k +
1)-th level optimal border, say, B**". According to the induction assumption, each
path between two nodes of G{**" leaving G/* has a degree n > 1 with at least one
optimal border. If a path between two nodes of G**" leaves G** ! but remains inside
G® it has a degree n > 1 with respect to B** P, n

Lemma 2. There is no path between two nodes v; and v; of a network independently
decomposed which has a degree higher than one with respect to any optimal border
and lower costs than all other paths between v; and v;.

Proof. We prove Lemma 2 by contradiction. Assume that a path p(v;,v;) exists
which has degree n > 1 with respect to an optimal border B and lower costs than any
other path between these nodes. By Definition 4 this path has at least two nodes (say,
v, and v,) in common with B which are separated by at least one segment of p not
coinciding with a segment of B. By the definition of optimal borders (Definitions 1
and 2) there is no path between v, and v, having lower costs than the path along B.
Thus, if the segment between v, and v, in p is substituted by the path between these
nodes along the optimal border B, another path p *(v;,v;) results whose costs are lower
than or equal to those of p. This contradicts the assumption. n

Lemma 3. If a graph G is independently decomposed and two vertices (v; and v;)
belong to one and the same of the resulting subnets overlapping exclusively on optimal
borders then at least one of all optimal paths between v; and v; lies entirely in this
subnet.

Proof. According to Lemma 1 each path between v; and v; leaving the subnet has
a degree n > 1 with respect to at least one optimal border. Thus, Lemma 3 follows
immediately from Lemma 2. ]

Lemma 3 reveals the reason for the choice of the term independent decomposition:
In contrast to the approach of Hu (see Section 2.1) the optimization of paths between
two nodes of one and the same subnet can be carried out independently of the other
subnets.

Optimal paths between nodes of different subnets can be determined on the base of
optimal paths lying entirely within one subnet. This is described by Eq. (1) for the
case of two subnets. If the independent decomposition results in a cascade of over-
lapping subnets as presented in Figure 3 the determination of optimal borders provides
a sequence of decision stages for a multistage optimization process, to speak in terms
of Dynamic Programming. _

Figures 6 and 7 illustrate the determination of optima] paths on the base of inde-
pendent decomposition. The graph whose structure is shown in Figure 6 was generated
by a random graph generator described in [18] and developed for the rationalization
of our research process. In this example integer numbers equally distributed in [0, 10]
were assigned as costs to the edges of G. Only for the purpose of illustration some
few nodes that have to be connected in pairs by optimal paths are marked. With respect
to the location of these nodes and to the structure of the graph it is reasonable to
decompose the entire graph by optimal borders in the region of its natural bottlenecks.
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FIG. 6. Network with optimal borders (heavy lines).
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In Figure 6 such optimal borders are shown, two of them represent already optimal
paths to be determined. Figure 7 shows the individual subnets resulting by a corre-
sponding choice of optimal borders. The optimal paths between nodes of one and the
same subnet and between nodes of different subnets are marked by heavy-typed and
dotted lines, respectively.

As already mentioned in special cases an extension of the procedure to directed
graphs is possible. An independent decomposition of a digraph G can be achieved if
we are able to find two paths p(v;,v;) and p* (v;,v;) with reverse node order, whose
elimination decomposes G into G, and G,. In the case of digraphs we call such a pair
of paths an optimal border. Analogously to the terms used in Section 2.1 we define
the subnets 5, and G, which result, if G; (i = 1, 2) is extended by all nodes ofp(v,, V),
by all arcs of p(v;,v;) and p* (v;,v;) and by all arcs between nodes of G; and nodes of
p(vi»v;). Then the optimization of paths between nodes of one and the same subnet
G; (i = 1, 2) can be carried out in G; independently of G (i,j=1,2;i#])).

In conclusion of this subsection we point out that the method of independent decom-
position is principally applicable to all graphs (or digraphs) which can be decomposed
into two parts by the elimination of one optimal border. If the resulting subnets have
this property, too, the original graph can be further decomposed by optimal borders.
The most important cases in which an independent decomposition is possible are planar
graphs. However, even if the networks representing layout possibilities in spatial regions
with pronounced inner structure (in industrial sites, e.g.) are not planar, they often
contain at least quiet large planar parts in which optimal borders can be determined.

For a further discussion of the efficiency of independent decomposition with respect
to typical applications we refer to Section 4.

2.3. Analogy to Linear Algebraic Equations

The definition of a particular algebra revealed an analogy between the optimal path
problem and the problem of solving linear algebraic equations [10]. A set S = R U
{oo} and two operations for all x, y € § were introduced:

x @Dy = min {x,y} (generalized addition)

x®y=x+y (generalized multiplication) (3)

The unit and null element in this algebra are 0 and %, respectively.
Obviously, the costs d(x;,x;) (with x;, x; E Y(G) (i,j = 1, . , N)) of an optimal

path from x; to x; in digraph G, in the following called distance d,,, satisfy the relation

min [dy + ¢y); i # ]
d; =0 L = )

b

where c; are the costs of the arc from x; to x; and ¢; is infinite, if no arc from x; to x;
exists.

By the extension of (3) to matrix operations, Eq. (4) can be written in the corre-
sponding matrix form, that means in the form of the linear algebraic system

=CQRQDDI with C = {c;} and D = {d;} (5)
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FIG. 7. Independent decomposition of the network shown in Figure 6; some optimal paths are
marked.
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where all matrices are square matrices of order N (number of nodes in G), and the
main diagonal and off-diagonal elements of / are 0 and «, respectively.

As already mentioned in Sections 1 and 2, many practical path-design problems are
associated with sparse networks. Considering the analogy of the optimal path problem
to the solution of a linear algebraic system it is possible to utilize sparse matrix
techniques in such cases.

In [8] two methods for the solution of the shortest path problem are presented. A
computer program generates another program or an address table (set-up stage) which
represents an optimal path algorithm that executes only nontrivial operations. The
procedure has an algebraic analogy with the Crout elimination. Because the execution
of the generated optimal path algorithm is very fast (for examples see [8]), the relatively
high computational effort of the set-up stage can be accepted, if a network of fixed
structure must be repeatedly treated with different arc costs.

In [9] the matrix of arc costs is assumed to be given in Block Triangular Form
(BBTF). This matrix is decomposed into a lower triangular matrix and a matrix with
nontrivial elements exclusively in the right border column. Then a modification algo-
rithm is applied to the solution of a linear algebraic system corresponding to (5) with
the mentioned triangular matrix as coefficient matrix.

3. GRAPH REDUCTION FOR THE OPTIMIZATION OF MORE
COMPLEX CONNECTION STRUCTURES

In this section we consider the practical situation in which a connection structure of
a certain class must be optimized within a large-scale network, whereas the optimized
structure itself is located in a relatively small (of course a priori unknown) region of
the entire net. In this case it is reasonable and can be highly efficient to eliminate in
a first reduction step by some appropriate simple procedure as many nodes and edges
from the graph as possible without loss of optimal solutions. Then some known method
can be applied to the reduced graph in the optimization step.

3.1. Node-Disjoint Paths

At first we consider the determination of k node-disjoint paths (k > 1) with minimal
total costs between two given vertices v; and v; of an undirected graph G (see also
[19]). For the present we assume that an admissible solution, i.e., a set of k node-
disjoint paths is already known. We denote the costs of the k given node-disjoint paths
in such a way by d(v,,;,s) (1 < s < k) that the following inequality holds:

J(vi,vj,s) > c?(v,-,vj,r) fors>r(l=s,r<sk.

Now the following reduction steps can be carried out (only for simplicity of the
description we consider undirected graphs):

1. All nodes with valence 1 and the incident edges are eliminated from G.
2. Allnodes v, € V(G)\({v;} U {v;}) with valence 2 can be eliminated, if the incident
edges are combined to one edge.
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3. All edges w € E(G) with edge costs

k-1

cw) > 8 = dwivk) + X [d@aym) = d,)] ©6)
m=1
(d(v;,v;) — as above costs of an optimal path between v; and v; in G),
4. all nodes
v, € VIG\({v} U {v;p with d(v;,v,) + d(v,,v;) > S, @)

and all incident edges are eliminated from G.

Steps 1 and 2 are independent of the selected admissible initial solution and can be
applied additionally to the graph resulting after steps 3 and 4.

The efficiency of the method depends very much on the computational effort nec-
essary for the determination of an admissible initial solution. In many practical appli-
cations it is reasonable to try to determine such a solution by a successive single path
optimization where after each optimization step one of the calculated optimal paths is
eliminated from the network. It should be noted that for k = 2, which is the most
interesting case from the practical viewpoint, such a procedure—if successful—supplies
the smallest bound in (6), namely, S =d(v,,v v;,2). Another reasonable method consists
of the following steps:

—Definition of some more or less arbitrary S on the base of single optimal path
costs.

—Graph reduction according to steps 1 to 4 above.

—Optimization of the k-fold node-disjoint connection on the reduced graph.

—If a solution exists, usage of its costs as a new bound in the reduction of G, which
delivers a subnet that certainly contains the optimal solution of the original problem;
otherwise new trial with increased §.

An analogous graph reduction procedure is proposed in [19] for the NP-complete
problem of finding & node-disjoint paths with minimal total costs such that for a given
B additionally

(?(v,-,vj,s) < B (l=s=<k
holds.

3.2. Steiner Trees in Graphs

A similar methodology can be applied to the Steiner-tree problem in graphs (see
also [1, 20]). Given an undirected graph G = (¥,W) with positive edge weights (costs)
and a subset Y C Y = V(G) of M = |Y| > 2 nodes that must be contained in the
Steiner tree.

At first we introduce a special sum S of costs associated with M — 2 of the nodes
of Y. Let for all v, € Y

¢ = min c(v,y;) (v EY), (8)
VEF(vi)
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where c(v;,v;) and F(v;) are the weight of edge (v;,v;) and the set of direct neighbors
of v; in G, respectively. Using (8) we define

S = min ( 2 c;',‘i“). ©)
.Y viENT, .

P2l =2

Furthermore C,, denotes the entire costs of an optimal solution of the Steiner tree
problem.

Lemma 4. Let C denote any upper bound of C,,, i.¢.,
C = Cop (10)

“Then holds: Each node v, € Y \7Y, for which the distances (costs of optimal paths)
d(v,,v;) to all v, € Y obey the inequality

dv,v) > ¥C — §) = 5, (11)

cannot be contained in an optimal Steiner tree.

Proof. Assume v is contained in an optimal Steiner tree T = (Y;,W;) and meets
inequality (11) for all v, € Y. Because v, € Y\Y and positive edge costs are assumed,
there must be at least two paths p(v,,v,) and p(v,,v,) (v, # v,) in T which join
exclusively v, and connect v, with some v,, € Y and some v, € Y, respectively, but
do not contain any element of Y’ = Y\({v,,} U {v.}). Let dr(v;,v;) with v, v, € Yy
denote the distance between v; and v; in T. Because this distance is never smaller than
the distance between v; and v; in G, inequality (11) yields

dT(v:’vm) > Sl’ (12)
dT(v:’vn) > Sl'

To construct a tree containing all elements of Y the nodes of ¥’ must be linked to the
union of the node sets of p(v,,v,) and p(v,,v,). Obviously the contribution of these
connections to the total costs of T is at least S (see (9)).

Thus, according to (12) the costs Cr of T meet the inequality

CT>2'S1 +§=C.
Because of (10) we get
CT > Copl

which is a contradiction to the assumption that T is an optimal Steiner tree. m

In the following we propose procedures for the determination of a cost bound C
meeting inequality (10). These procedures compute costs of trees containing all elements
of Y on the base of path optimization.

1. Determination of costs C}*T of a minimal spanning tree in the complete graph
on the vertices of Y, for which the edge costs are given by the lengths of the corre-
sponding shortest paths in G.
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In contrast to the Steiner tree problem the minimal spanning tree problem can be
solved in polynomial time.

At most O(M - N?) with M = |Y|, N = |Y| operations are required. A well-known
minimal spanning tree algorithm is proposed in [21].

2. Determination of costs C§ of an approximate solution of the Steiner tree problem
by one of the heuristic variants described in [1, 20, 22-24].

All these variants of a basic heuristic approach are mainly characterized by a stepwise
extension of a tree: In each step one node of ¥ not yet in the tree is connected by an
optimal path to the ‘‘nearest’ vertex in the tree. The most time-consuming variant
requires at most O(M?* - N?) operations (for more details see the above quoted refer-
ences, especially [24]).

Because the costs determined by each of these procedures are not lower than the
costs of the optimal solution of the Steiner tree problem, according to Lemma 4,
C¥T or costs C§? derived by variant i of the heuristic approach can be used as bound
C by (11) for network reduction.

Note that only C¥T or Cf?, not the trees themselves are necessary for the decom-
position of G into two parts.

Because for all of the mentioned heuristic variants

Cf) < C¥sT (13)

(see [23, 24]), the heuristics never yield a smaller degree of network reduction on the
base of Lemma 4 than the minimal spanning tree (MST-) procedure. However, with
respect to both computational and implementation effort for the determination of a cost
bound C, the latter, too, has its right to exist. If, for instance, both the MST- and the
heuristic Steiner tree algorithm are implemented in such a way that all optimal paths
and corresponding costs potentially necessary for the tree construction are determined
in a first stage, the computational and storage requirements of the MST-procedure are
generally lower than those of the heuristics. Because in the case of the minimal spanning
tree branchings are admissible exclusively in nodes of ¥, only M(M — 1)/2 optimal
paths in G and corresponding costs must be computed and stored in this stage for the
construction of the tree and the determination of its costs C}*T, whereas M(M — 1)/
2 + M(N — M) paths and costs are necessary for the calculation of C§). Furthermore
using special purpose software for the determination of C¥5T even in the course of the
MST-procedure only the costs of optimal paths, not the paths themselves, are required,
whereas in the case of the Steiner tree heuristics certain optimal paths must be calculated
and stored in the course of the tree determination.

a b C

FIG. 8. (a) Graph G and Y = {A,B,C}; (b) optimal Steiner tree with costs C,,, = 4; (¢) 2
solution of the MST-problem (determined in the complete graph on Y) with CJ*" = 4.
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To achieve a high degree of network reduction according to Lemma 4 we are
interested in a cost bound C = C,, being as small as possible. Therefore the following
question arises:

How much larger than C,, can be C, if its value is delivered by the procedures
proposed above?

The answer to this question is given by the following Theorem.

Theorem 1. If the value of C = C,, is given by C¥T or by Cf) (where the upper

index i specifies some variant of the class of Steiner tree heuristics described in [24],
then

C 1
1 =21 — —
() COPl ( M)

and (14)
) th_ere is no B > 1 such that always

¢ = B.

Cop

Proof. Because of

MST
v 2 (1 - i)
Copt M
(see [23, 24]) and inequality (13) the first statement holds. The existence of Steiner
tree problems for which C,, = C}*T (see Fig. 8) proves the second statement. ]

Figures 9 and 10 show an example for the Steiner tree optimization using the proposed
method for the reduction of G with C = C¥5T.,

In Figure 9 the result of the MST-procedure is marked. The costs of this tree
connecting all nodes of ¥ are CMST = 13. Because according to (9), S = 2, we have
in this example §, = 5, 5.

Figure 10 shows the reduced graph certainly containing the optimal Steiner tree.
The exact solution of the problem is marked.

3.3. An Extension of the Steiner Tree Problem in Graphs

Now we treat network reduction for an extension of the Steiner tree problem in
graphs in which additional costs for branchings arise which are dependent on the degree
of branching. Formally this optimization problem can be stated in the following way.

Steiner tree problem with branching-degree dependent costs (STBC-problem):

Given

—an undirected graph G = (Y,W) with positive edge weights (costs),

—asubset Y C ¥ = V(G) of M = |Y| > 2 nodes,

—for any subgraph T of G, a function deg;(v) assigning to each node v € V(T) the
number of its incident edges in T, and a cost function cz(v,b), with cz(v,b’) = cz(v,b)
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FIG. 9. Graph G = (Y,W) with four marked nodes (composing T’) that have to be connected
by an optimal Steiner tree.

for b’ = b, assigning to each v € V(T') and each b € N with 2 < b < deg,;(v) a
nonnegative real number.

Find a subgraph of G with the minimum costs among all connected subgraphs that
contain ¥, where the costs of a subgraph T are the sum of the costs of edges in T
increased by the branching-degree dependent term

2. ca(v, degr(v),
vEVs(T)
where V5(T) = {v|v € V(T) N degy(v) > 2}.
This minimum cost subgraph will be called Steiner tree with branching-degree dependent
costs (STBC) and the minimum total costs are denoted by C5,cC in the following.
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FIG. 10. Result of the graph reduction using Lemma 4 in the case of the example presented
in Figure 9.

Again network reduction can simplify the solution of the problem. A Lemma similar
to Lemma 4 will be used for this purpose.

Lemma da. Let C5™C denote any upper bound of CSIEC, i.e.,
C‘vsch = C(s’glsc (102)

Then holds: Each node v, € Y\Y, for which the distances d(v,,v) toall y, € Y obey
the inequality

d(v.S?vk) > %(CSTBC — S‘) é S?TBC‘ (lla)

cannot be contained in the STBC.
The proof is similar to that of Lemma 4 and therefore left to the reader.

In the following we propose simple procedures for the derivation of a cost bound
C‘STBC-

1. Determination of the minimum among the costs of all stars connecting the nodes
of Y and with their centers placed in an element of this set (at most O (M - N*) operations
required). ‘

2. Determination of C{) and a corresponding tree T; as before, and calculation of

*S is given by (9).
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@ nodes ve¥; (Vvel og(v,d) = 4 for 2< d<degg(v))
® nodes veY~Y, for which cB(v,d) = 2 for 2< d<degg(v)

B  noges ve Y~¥, for which cy(v,d) = 0 for 2< d<degg(v)

FIG. 11. Example of a graph G = (Y,W) with set Y = {A,B,C,D,E} whose nodes have to be
connected by a Steiner tree with branching-degree dependent costs (STBC). An admissible
solution of the STBC-problem is marked.
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FIG. 12. Result of the network reduction by usage of Lemma 4a for the example of Figure
11 (§5™ = § (17 — 4) = 6, 5). The optimal solution of the STBC-problem specified in Figure
11 is marked.

the sum

CH + D cy(v, degr(v)).

veVa(Ti)

The first procedure yields the minimum among the costs of all subgraphs connecting
the vertices of Y and containing only one branching node with minimal degree, the
others emphasize the minimization of branching independent costs. Because all men-
tioned procedures determine costs of admissible solutions of the STBC-problem, these
costs can be used as bound CS™®C in Lemma 4a for network reduction.

Figures 11 and 12 illustrate the procedure by an example. Graph G, node set Y and
an approximate solution of the ordinary Steiner tree problem are shown in Figure 11.
The marked approximate solution with edge costs of 13 results by that variant of the
basic heuristic approach which was presented in [1]. The additional costs for branchings
in this tree are 4 (see Fig. 11). Thus we can use CS™ = 17 as cost bound in Lemma
4a. Because § = 4 for the example, the right side of (11a) is S{™C = 6, 5. Application
of Lemma 4a to G yields the reduced graph presented in Figure 12. Of course this
graph could be further simplified, for instance by a successive elimination of nodes

with valence 1. The exact solution with C32¢ = 15 is marked in Figure 12. This
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solution can be determined by a simple extension of the exact optimization approach
presented in [1] for the ordinary Steiner tree problem.

4. COMPARISONS AND CONCLUSIONS

It is a common practice to characterize algorithms by the number of necessary
operations. In complex problem-solving processes as considered in this paper such a
single parameter characterization can be rather uninteresting or even misleading. In
[4] and [9], for instance, the computational effort for the determination of appropriate
cut sets and for the transformation of the matrix of arc costs to Bordered Block
Triangular Form (BBTF), respectively, is not taken into account. Furthermore in [4]
the efficiency of the algorithm is discussed for a cascade decomposition with an equal
number of nodes in all cut sets and an equal number of nodes in all subnets, which is
generally no typical situation. The methods described in [8] need relatively high com-
putational effort in the set-up stage, but after the evaluation of the structural properties
the execution is very fast. In the case of independent decomposition it is impossible
to fix the optimal borders arbitrarily. Therefore also the subnets resulting by this
decomposition method cannot be' given in advance. The same is true for the graph
reduction approach presented in Section 3. The computational effort for these decom-
position techniques is low because only single paths or other simple connection struc-
tures which can be optimized in polynomial time are necessary.

The choice of a method depends very much on the practical application. In some
situations (as those mentioned in Sections 1 and 2) the entire network is already
described in parts. Therefore the algorithms presented in [4, 5] can be used immediately.
On the other hand, the BBTF is generally not given a priori.

Independent decomposition is very suitable in applications in which a high degree
of independence between subnets is desired. This is especially important in those
practical situations which lead to the optimization of paths between nodes that are
clustered in relatively small parts of an entire large-scale network. By independent
decomposition it is possible to eliminate network parts that are irrelevant for the
optimization from further considerations. This also holds for the graph reduction meth-
ods described in Section 3. But in contrast to independent decomposition the relevant
network part is not determined by a direct construction of its borders but by the usage
of cost bounds.

The computational advantages of these methods are quantitatively illustrated by
Figure 13. In Figure 13a the three marked curves represent approximatively the com-
putational effort for the determination of R - N optimal paths in a graph with N nodes
by some algorithm requiring O(N?) operations (in the worst case) and not utilizing
decomposition methods. The other curves in Figure 13a stand for the corresponding
computational effort for those cases in which by independent decomposition, i.e., by
the determination of some optimal paths, a subnet with 7 - N (R < r < 1) nodes results,
to which the search for the R - N optimal paths can be restricted. This computational
effort consists of two additive terms. The first (o - N?) regards the effort for the
determination of the necessary optimal borders by some shortest path algorithm. The
second term (R -+ N - (r - N)?) represents approximatively the computational effort for
the determination of the R - N optimal paths in the subnet. Note that for sufficiently
large N the curves are practically independent of a.
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FIG. 13. Reduction of the computational effort by independent decomposition (a) and graph
reduction (b).

As already mentioned the reduction of the computational effort by decomposition
methods can be much higher, if the optimization regards more complex structures than
shortest paths. Only as one demonstration of this fact Figure 13b illustrates the situation
for a typical case in which the computational effort for the determination of an exact
solution without utilizing decomposition possibilities is proportional to 2V (see marked
curve in Figure 13b). The other curves correspond to o + N* + 2™ where the first
term o - N* = &’ - (R N) - N? stands for the number of operations required by a
graph reduction method based on the determination of R’ - N shortest paths, and the
second term represents the computational effort for the optimization in the reduced
graph with r + N nodes. Curves 2 and 3 are practically independent of « in the region
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in which they are drawn. Note that the scales of the ordinates in Figures 13a and b
are different.

Besides its computational efficiency the main advantage of these decomposition
techniques lies in the fact that we achieve independence of optimization processes in
certain subnets. As a consequence of this the results of independent decomposition and
graph reduction are dependent on edge costs. This is a disadvantage in such situations
in which optimization has to be carried out many times in a graph with changing
numerical values of costs, but invariable structure. Such applications occur in traffic
control problems. If the execution of each optimization after a change of costs is so
fast as described in [8], in these situations one may accept high implementation and
computational effort for a set-up stage and use decomposition techniques that utilize
only structural properties of the entire network.

Finally Table II presents in an overview main characteristics of the methods described
or mentioned in this paper, their integration in the overall problem solving process
including man-machine interaction, and typical applications.

5. FORMULATION OF A GENERAL OPTIMIZATION PROBLEM

In this final section a new, relatively general problem formalization is presented
which regards the optimal layout of networks in environments with pronounced inner
structure. This formulation (see also [1]) is based on two models, one for the inner
structure of a two- or three-dimensional region, in which a netlike system has to be
laid out, and one for the system itself. We model this system as a graph P. In the case
of a material system the vertices represent its components and the edges connections
between them (e.g., cables). In the context of transport optimization problems, for
instance, P may represent an abstract structure of activities, where the vertices may
correspond to maintenance, repair, and parking of a vehicle at generally not yet localized
depots, as well as to starting, intermediate stopping, and terminating in (generally not
yet fully specified) points. In this case P is a digraph and the arcs represent vehicle
movements between the activities corresponding to the adjacent vertices.

According to the arguments of Section 1 we model the inner structure of the region,
in which the layout has to be performed, also by a graph (generally a digraph). The
edges of this graph—in the following called G—represent possibilities of connection
line routing, the vertices may correspond to possible crossings and branchings of route
segments, to points of possible placement of system components, and to spatially fixed
connections to other systems already existing.

Furthermore, we introduce a set Q of admissible system structures. In the most
simple case this set contains only one element whose characteristics are explicitly
given. However, in many practical applications only a global structure for the system
or parts of it is defined. This is the case, for instance, if a part of the system has to
be a ring, connecting some components in a sequence not specified a priori. An
admissible net layout solution is given by an admissible assignment of vertices and
arcs of P € Q, respectively, to vertices and paths in G, respectively. By this mapping
(called ¢ in the following) costs result. We look for that pair (P,{) with P € Q and
admissible ¥ for which the objective function is optimal.
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More formally this general problem can be stated in the following way:

Given a digraph G = (Y,W) with the sets of vertices and arcs Y = V(G) and W =
E(G), respectively. In the following we consider only digraphs in which the total costs
of any circuit are nonnegative.

Furthermore a set

U = {A;|A; C Y}, with the index set J C N (15)
and
U Ai = Y’
ieJ
G P

I:Lﬁ

7 b

FIG. 14. (a) A simple example of graphs G and P and the relation R, (b) realization of an
admissible mapping.

AL
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where the sets {), w and the functions o and B are given. With these definitions the
optimization problem can be formulated in the following way:

Given a finite digraph G, a set U according to (15), a set Q of digraphs (admissible
system structures). Find a pair (P,§) with P € Q and admissible {,. for which the
(generally multidimensional) objective function

Z(P’q") = Z({(Dr}rew, {‘P_l(}’)}yey) (21)

becomes optimal.

Figure 14 illustrates the problem. The arrows represent the relation R between X
(consisting of all elements of X in this case) and U.

Obviously some of the classical optimization problems in graphs, as the determination
of optimal paths, belong to the just described class of network layout problems.
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