OPTIMIZATION
OF CONNECTION STRUCTURES
IN GRAPHS

Edited by
A. fwainsky

Central Institute of Cybernetics and Information Processes
Academy of Sciences
of the

German Democratic Republic

213

Peter Richter, Oleg Taraszow

Random Graph Generation

Abstract

In this paper iwo methods of graph generation are presented by
which it is possible to produce random graphs embedded in a
two- or threedimensional rectilinear grid. For the two-dimen-
sional case we describe a graphical presentation which is
suitable not only for the output on graphic displays but also
on low-cost printers and alphanumeric displays. The presented
methods have been the basis for the development of a graph
generator written in FORTRAN T77.

1. Introduction

Many algorithms deal with solutions of graph-theoretical prob-
lems. If these algorithms are implemented, adequate graphs for
performance analysis will be necessary. The reasons for the
application of a graph generator are the following:

- Manual preperation, input, and checking of graphs is
very itime-consuming.

- Only the use of a large number of different graphs of a
certain class makes it possible to judge the quality and
power of graph algorithms.

The two random generation methods described here yield finite,
connected, and weighted graphs embedded in two~ or threedimen-
sional rectilinear grids and containing neither self-loops nor
multiedges. The user can sepcify the limitation of the graph
extent by a window or cuboid.

214

Such graphs are especially useful as fictive models of layout
possibilities in industrial sites, and, in fact, have been
used during the research procesas reported in this volume.
With respect to an expressive illustration of layout problems
and their inherent difficulties the graphic representation of
graph models is of importance. Such a representation can be
eagily generated on the basis of the methods described in
this paper.

Another example for the generation of fictive models of prac-
tical routing possibilities is that described in /1/. But in
contrast to our approach a whole twodimensional grid and some
further edges between randomly chosen grid vertices are gen-
"erated. In models of traffic networks these additional edges
may stand for highways. '

Finally we only mention /2/ as an example for the generation
of random graphs which are not intended to be embedded in the
two~ or threedimensional EBuclidean space.

2. Defipitions, Notatiopg and Symbolism

In this paper the following terminology will be used:

- Q= (V,B) := any graph Q with vertex set V and edge

set E

- V(Q) := vertex set of graph Q

- E(Q) := edge set of graph Q

- PQ(p,q) i= any path in graph Q between vertices p
and q

- IN s= pet of natural numbers

- (mk,d) := ordered pair to denote a metric space with

the underlaying set IN k, the distance func-
tion d, and the dimensionality k = 2 or 3

k
a(p,q) 1= E1 I§4 = M4l = reotilinear distance between

two points P= (f"""'yk) € ’k and

215

Q= (qpeeesly) € W with k = 2 or 3
- T = (V,E) := virtusl grid within the space (INX,d)

-V -)fxic WX (X denotes the Cartesien
{=1
product); Ky = {1,2,.0.,1;}5 1, - input
parametex

-T im {(p.q):p,qGVAd(p.q)-ﬂ‘V"v

(edge set E(W))
G = (V,B) = actual generated subgraph G & U

~ deg(i) sm degree of vertex i with respect to G

- deg*(1) :m degree of vertex i with respect to &

- deg(i) := min{p,,deg*(1)} (p, see below)

-1€1 :m denotes the selection of an element i out

of set I by a pseudo-random-number genera-
tor approximating a choice with the same
probability for each element of I.

In the following we often write shortly
“randomly chosen".

- NQ(:I.) t= get of neighbours of vertex i of graph Q
-n := | V(G)I
-m := 1 EB(G)I

Purthermore we introduce the following perameters for the
control of algorithms describes below

-~ Py = number of vertices in the generated graph
~py = maximum vertex degree; Py and p, are valid only in
: the case of method B (s. below)
- py = mumber of initial vertices in the case of method A
2 - generation in the 2-dimensional grid T

" P4 = 1 3 - generation in the 3-dimensional grid §
1 - generation of a tree
TP { 0 - generation of an arbitrary graph
0 - no costs assigned to edges
1 - Weights are assigned to the edges of G accord-

~ p -
6 ing to a uniform distribution between Pq and pg
2 - Weights are assigned to the edges of G accord-

ing to a normal distribution with mean value

216

equal to the distance d between adjacent vertices

and with standard deviatior pg. Negative values

are rejected.
- p7. Pg» P9 =3 see Pg

0 - no costs assigned to vertices
Pio = { 1 - Weights are assigned to vertices of ¢ according
to a uniform distribution between Piq and Pqoe

= Pyq» Py2 = 8@ Pyg
- 11 s= length
- 1. := width of the demanded output window or the
- 1§ := height ‘output cuboid

3. Generation of an Undirected Graph G which is Embedded in
the Grid §

This generation can be carried out in several ways, among
them the following two methods A and B:

Method A:

At first a set W containing P3 different nodes 1 € V is gen-
erated. Then the vertices of W are comnected by a tree. If

Py = 1 the graph generation is terminated. Otherwise a further
step is started, namely the extension of the tree by the gen-
eration of additional paths beiween some pairs of vertices

1,y € W.

Method B:

By this method graph G is generated iteratively starting with
one randomly selected vertex v € V. In each iteration a ran-
domly chosen edge incident to at least one of the vertices
already belonging to G is added to this graph until the num-
ber of vertices in G is equal to Pq. That is carried out in
such a way that the degrees of vertices in G do not exceed

Py

217

3.1. Graph Generation by Method 4

3.9.1. The Generation of a Tree G (Algorithm I)

Method A generates trees in the following steps:

Initialisation:
After the generation of vertex set W (s. above) one vertex of
W is randomly selected and constitutes the tree G.

Extenaion Step:

In each extension step two vertices y € V(G) N W and

x € W\V(G) are selected. Then the generation of & shortest
path from x to y is carried out iteratively (starting with

x), until a vertex y* already belonging to the tree is reached.
In each iteration the optimal path is randomly extended by

one element of E. Tree G is extended by the path from x to y*;
This extension is repeated as long as not all vertices of W
belong to V(G).

fermination:
If all vertices of W belong to V(G) the procedure is termina-
ted.

The tree extension is illustrated in Fig. 1.
Fig. 2 shows a tree generated by method A as an example.

3.1.2, Random Generation of Cycles (Algorithm ITI)

For Pg = O method A generates a further graph extensiom in
the following steps:

Extension Step;

In each extension step first a vertex x Ew is randomly
chosen but only accepted, if for a random degree q (& € {1,2,.
..,deg¥(x)}) holds & > deg(x). That means, x is rejected with

a probability %%E‘%%T and removed from W.

If x has been accepted another vertex y € W\{x} is randomly

218

x € W\ ¥(G)

J °
AL

- g dro

@—g-—.s-—'r—.a

13 °

L [] [] L L % L]

[] [] [] L 3 ‘:’— o
y € V(@) aW

initial vertex w ¢ W
current graph G = (V,E)
a possible random path Pu(x,y*)

-l 1o

vertices of the set V
(edges of ¥ are not presented)

—= possible directions of the
congidered shortest path

Pig. 1:: Illustration of the tree generation by
method A (Algorithm I)

219

B

5
L&
@'@
L L
a.e

o

&)

@
9

oo

W
©=®
-
D

202020260
&
¥

e

12 3

®

Fig. 2: A tree rendomly generated by algorithm I
O initial pointa

additional generated vertices

220

Fig. 3: Graph extension by method A (Algorithm II)
edges of the existing tree

additional edges created
by algorithm II

221

chosen, Then the generation of a shortest path from x to y is
iteratively carried out (starting with x) until a vertex

y* € V(G) is reached and the next iteration would certainly
extend the path along an edge which already belongs %o G.
Again, in each iteration the optimal path is randomly extended
by one element of E.

The extension is terminated if W = @.

Fig. 3 presents a graph layout produced by algorithm II.

3.2, Graph Generation by Method B (M gorithm IIT)

Method B generates graphs in the following steps:

Initialisation:
Only one vertex x € V randomly chosen serves as initial
point so that G = ({xo},¢) is the starting graph.

Extension Step:

In each extension step one vertex x € {1 € V(G) | deg(i)<

< deg(i)} is randomly chosen. Then, a further vertex
y€{ieVila(x,i) = 1 A deg(i) < aég(i) A (x,i) ¢ E(G) A
A(p5 = 0Vi¢ V() is randomly chosen. The new edge (x,¥y)
and the possibly new vertex y are added to G.

Termination:

The extension is terminated if IV(G)I = p,, or if
{ie V() : deg(i) < deg(l)}

Pig. 4 presents an example of a graph generated by method B.

Remark 1: By a proper choice of the input parameters, in
contrast to method A, the number of nodes and the
maximum vertex degree can be controlled.

Remark 2: A special random preference of vertices x € V(G)
with a certain degree (e. g. deg(x) = 2) can be
useful for influencing the graph layout ("stretch-
ing").

222

FMg. 4t Layout of a ph randomly ' nexrated
by method B ﬁ‘igorithn III)se

223

Remark 3: If required it is easy to elimipate in the grephs
genexrated by method A or B a certain percentage of
vertices with degree two and t® comdine the adja-
cent edgea into one edge. Of course, then the
resulting edges of G are assigned 4o more then one
edge of the grid.

e ty o

In the following the worst-case computational effort required
by the three algorithms described in Section 3 is presented.
For the twodimensional case 13 is equal to sero.

Algorithm I has the time complexity
0((1y + 15 + 13)(py - 1))
Proof: Algorithm I produces a tree commecting Py initial

vertices by the construction of at most Py - 1 paths. No path
canhavonorothm11 +12+13 edges.

Algoritha II has a time complexity of
0({x - Dp3(2y + 1, + 14))
where & = 4 or 6 in the ocase of 2- or 3-~dimem-
aional grids, respectively.

Proof: At moat (o ~ 1) paths are constructed for each of the
Py vertices of W being source nodes of the patha and each path
contains at most 11 + 12 + 13 edges.
Algorithm III has & time complexity of

°‘P1P2)-

2roof: During the generation of the graph each of its Py
vertices can be selected at most Py-times.

224

5. The Output of a Graphic Representation

The generation of a graphic representation is carried out in
the following steps:

In the first step the minimal window or cuboid is determined
which is required for the graphic representation of the actu-
al generated graph.

With the aim to generate & very compact graphic representation,
especially by low-cost alphenumeric printers, in the second
step a remmmbering of the graph vertices is performed: The
vertices are numbered line per line from left to right, where-
by only the number of the first vertex in each line is printed
(8. Fig. 5 and 6).

1 X 0-X
I 1
4 X 0-X X X X=X 0-X
1 I 11 11
13 0-X 0-0 0-Xx-0-0 0 0-0 0
I 1 I 111 1
25 0-0 o X 0-0-0-0 0 0-X
1 1 1 11 1
36 X=0-0-0 X~X~0~0-X-X x0 0
1 1 1 Ir o1
49 X 0-0-0 X=X=-0-X X ©0-0-0-0
1 1 I 1
62 0 X X=0=X=X-0 X-0-0~X-0-X
I 1 I I 1
75 X=0-X~0-0-0-X-0~0 0-0-0~0-0-0 0
111 1 I I I 1
91 0Xx X 0 X-0 X=X 0-X X-0
1 1 1 1
103 X-X-0-0 0~0-X-0-X 0-X-X X
I I
116 , 0~0-X X

Fg. 5: An example of a generated tree

X - vertex of W
0 = further vertices

E } edges

1 x-0 X-X-0-0 X X~X
1 I 1 I
10 X 0-0-0-0 0 0 0~X-0-0-0-0-0-0-0-0 X
I I I I I If
28 0-0-X-0 O X-0-X-0-0-0~0 X X 0-0
I I I II I I
44 0-0-x-0 0-X X X X 0-0-0-X x 0
I I I I I I1I
59 X 0-X 0-0-0 0 0-0-0 X
I1 I I I
70 0 0-X-0-X-0-0~0~0-0-0~0-X-0-C-0 0
Il I 1 111
87 X 0 0 X X-0~X 0 0 0-0
I 1 I II I
98 X 0 0-0~0 0 X-0 O
1 I I I 111
107 X g X=X [0 X 0-0-Xx
I I1I I I1I
117 ¢-xX-0 0 xX-0 0-0-X=X 0 0-X~0-X
1 I 1 I I
132 x-0 X X~0-X-0-0-0-X 0-0~-X

Pig. 6: Another example of a generated iree
(same input parameters as in the case of the
example presented in Fig. 5)

In the third step the generation of a graphic representation
is performed line by line, whereby each horizontal line of
the grid together with the information regarding the conmnec-
tions of the graph to the lower part of the grid is trens-
formed into two lines of the printer.

References

/1/ Glover, P.: Computational Study of an Improved Shortest
Path Algorithm. Networks, Vol. 14 (1984), 25 - 36.

/2/ Heck, J.: Zufallsgraphen. Ein Algorithmus und seine An-
wendung in SIMULA 67. TU Berlin, 1975.

