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The Steiner problem: a survey”

E. N. GORDEEYV and O. G. TARASTSOV

Abstract — For the past decade the Steiner minimal tree problem has attracted the attention of researchers
in discrete optimization. A brief survey of the main results concerning the properties and algorithms of
the Steiner problem in the Euclidean plane, the Steiner problem in the plane with rectilinear metric and
the Steiner problem in networks is done in this paper. The main attention is paid to the recent results
concerning the last problem.

1. INTRODUCTION

At present some different problems united by the term Steiner problem (SP) are in-
vestigated in discrete optimization, computational geometry, various tracing problems
in circuit design, communication networks, mechanical and electrical systems, etc. The
publications in these regions can be separated into two parts. In the first part the
problems related to the classical Steiner problem and generalizations are considered,
the main attention is paid to investigations of its properties and algorithms for solu-
tion. The second part consists of the publications involving problems which ‘distantly’
link with the classical Steiner problem, or applied problems which arise as a result of
attempts to use the algorithms to solve the Steiner problem and in which the main
attention is paid to the special features of these algorithms in concrete situations.

Two main reasons which initiated this work should be mentioned. Among the prob-
lems of discrete optimization the maximum amount of researches in 80’s was dedicated
to the SP and a certain progress in the area of its solution was achieved because of
importance of its applications. At the same time in our country this problem is insuffi-
ciently knowmn.

Up to now there have been two surveys (105, 161] related to the Steiner problem
in networks (SPN). A brief survey of heuristics in the Steiner problem with rectilinear
metric (RST) was done in [120]. A survey of some results is presented in [11]. That is
why in this paper the main attention will be given to the SP in the plane, for the SPN
we will give a list of the main results and attention will be paid to the latest publications
which were not mentioned in the previous surveys. At the same time, taking the little
accessibility of these surveys into account, we attempt to give an mtegral plcture of the
results available presently in this field.

The Steiner problem in the Euclidean plane (SPE) is concerned with the construction
of the shortest network spanning a set of given points A = {Ay,..., A} called terminals.
But, in contrast to the well-known minimal spanning tree problem, in the Steiner prob-
lem it is allowed to introduce any number of additional edge interconnections called
Steiner points (S-points) anywhere in the plane. The shortest possible network (which
has to be a tree) is called the Steiner minimal tree (SMT) and any tree covering the set
of terminals and possibly some S-points is called a Steiner tree (ST).
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The SP is apparently one of the oldest optimization problems in mathematics. It
goes back to Fermat, who considered the case n = 3 [55], but the first solution of this
case was obtained by Cavalieri and Torricelli [139]. At the beginning of the last century
Steiner also considered this problem and his name was connected with this problem,
probably, thanks to Courant and Robbins, who in their well-known book [36] gave a
formulation and some properties of this problem is the general form. Previously, in
1934, this formulation for an arbitrary n was given by Jarnik and Kossler [85].

A popular discussion of some problems related to the Steiner problem is given by
Bern and Graham [11]. The history of the Steiner problem is presented in [11, 98].

If the rectilinear metric substitutes for the Euclidean one, the rectilinear Steiner
problem (RSP) is obtained. In this case, the ST covers terminals using only vertical and
horizontal lines, and the distance between two points with coordinates (z;, :), (z;,¥;) is
equal to |z; — z;| + |yi — y;|. The rectilinear Steiner tree with minimal length (RMST)
is required.

The separation of this case and particular attention to it can be explained by its
applied aspects, for example, in wire layout problems in circuit design.

Restrictions on the number of S-points and on the location lead to the third and the
most studied statement of the problem: the Steiner problem in networks (SPN). Let a
graph G = (V, E) be given and let a set of vertices V consist of a set A of terminals and
a set S of S-points.

In what follows |V| = p =n + s, |A| = n, |S] = s, |E| = m. In this case for an
undirected network G = (V, E, c) with p vertices, m edges, a cost function c: £ — R
and A C V, we look for a subnetwork G4, which spans all vertices of A and the sum of
its edge costs has the minimum value. This subgraph is called the minimal Steiner tree
(SMT).

These three statements will be referred to as the main statements of the problem,
in distinction to all the others, which, as a rule, are either their special cases or gener-
alizations.

The article is organized as follows. The complexity of different statements of the SP
is discussed in Section 2. A survey of the Steiner problem in the Euclidean plane (SPE)
is given in Section 3. The rectilinear case is discussed in Section 4. A survey of SPN is
given in Section S. _

The Steiner problem has provoked the question about the ratio of the MST length
and the minimal spanning tree length, which is presented in the recently solved conjec-
ture of Gilbert-Pollak, formulated in 1968, and other less known combinatorial ques-
tions. These problems are discussed in the last section.

2. THE COMPUTATIONAL COMPLEXITY OF DIFFERENT STATEMENTS
OF THE STEINER PROBLEM

At present there are no polynomial time algorithms for the main statements of the
problem.

In his well-known paper [87] Karp proved that SPN is NP-complete. He reduced
the NP-complete problem ‘Exact cover’ to SPN. This proof was one of the first among
similar proofs of NP-completeness of discrete optimization problems.

If s = 0, then the SPN is equivalent to the minimal spanning tree problem, for
which the well-known polynomial algorithms exist, for example, Kruskal’s algorithm of
complexity O(n?) [96], Prim’s algorithm of complexity O(mlog n) [114], and a number
of recently obtained more efﬁcu:m algorithms.
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If n = 2, the SPN is equivalent to the shortest path problem between a fixéd pair
of graph vertices for which a polynomial algorithm also exists, for example, Dijkstra’s
algorithm [39] of complexity O(n?). But the SPN remains NP-complete even in the cases
where the edge costs are of the same values, the graph is planar, the graph is bipartite
and the sets A and S are its parts.

However, it was established that the SPN can be solved in polynomial time for some
classes of graphs which we consider in Section 5.

Here it should be mentioned that the SPN can be solved in linear time for the class
of the so-called series-parallel graphs (without subgraphs which are homeomorphic to
K4). Richey and Parker [122] consider a closely related problem (using the term SP).
Let subsets of vertices Sy, ..., Sk be fixed in a graph G. Is there a partition of the graph
edges into k subsets Ey,...,Ex, E;NE; = @, 1 # j, such that for any : = 1,...,k the
subset E; forms a connected graph which covers all vertices from S;? This problem is
called the Steiner subgraph problem and its NP-completeness is proved even for the
case of the series-parallel graphs. This interesting result characterizes indirectly this
class of graphs and complexity of the SPN.

Other results related to complexity of the SPN on some particular classes of graphs
are given in [109, 111].

A case of the SPN of applied interest arises in connection with Darwin’s theory of
evolution. A special class of trees describing the hereditary relationships, which are
constructed on the basis of the differences in their DNA codes, arises here. Such trees
are called phylogenetic trees. The Steiner problem in phylogeny is investigated in [S9].
This problem has the following mathematical statement: the Hamming distance is taken
for a set of words whose length is equal to ¥ in a fixed alphabet T and the SP for this
metric space is to find the SMT for a given X € TV, It is proved that this problem is
NP-complete even for the case where the alphabet consists of two elements. The known
NP-complete problem ‘Exact 3-cover’ is reduced to it.

The NP-completeness of the RSP was proved in [63]. The authors reduce the known
NP-complete problem ‘Node cover in a planar graph’ into another restricted node cover
problem. A planar graph G = (V, £) with no vertex degree exceeding 4 and an integer
k are given. Is there a node cover V= for G with |V*| < k and such that the subgraph
of G induced by V* is connected? The last problem is transformed into the RSP.

In [64] NP-completeness of the SPE was proved by transforming ‘Exact 3-cover’
problem to a variant of the SPE.

Some classes of the SPE and RSP which can be polynomially solved are considered
in the following sections.

3. THE STEINER PROBLEM IN THE EUCLIDEAN PLANE

The statement of the problem was presented in Introduction. The first method of its
solution for n = 3 is given in [39]. Courant and Robbins [36] along with the statement of
the problem for an arbitrary n gave two fundamental properties: the number-of S-points
in the SMT does not exceed n — 2, and at any Steiner point exactly three lines meet
making angles of 120° with each other. Nevertheless these two facts by themselves are
not sufficient for the construction of a finite procedure of searching the SMT, since for
any pair of points D, B the set of points P such that £DPB = 120° is infinite.

The first finite procedure for the problem was suggested by Melzak [108] in 1961. He
made the key observation that if two points D and B are directly connected to a Steiner
point P, then the third line segment incident to P passes, being extended, through the
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third vertex C of an equilateral triangle with D and B as its other two vertices and
lying in the half plane determined by the line passing through D and B which does not
contain P. In fact, DP + BP = CP. Thus, the Steiner minimal tree for a set of n
points in the plane, with D and B as two vertices immediately connected to a Steiner
point, can be found by replacing D and B with C' and solving the SP for the n— 1 points.
There are two choices for C, and n(n — 1)/2 choices for the pair D, B. Furthermore,
the SMT needs not to have as many as n — 2 Steiner points (it is called a full Steiner
tree (FST) if it does). If it does not, the SMT will be decomposed into a number of
smaller FST’s. If we blindly organize a computation to try all possibilities, their number
will grow exponentially. These facts have helped for the construction of an exponential
algorithm for the SMT.

The problem of finding an exact solution of the SPE was developed by Cockayne in
some papers [29-34].

The proof of the main result in [108], presented by Melzak, contains errors and the
algorithm is not clearly described. Cockayne in [29] gives a correct proof and studies
the properties of the SMT both for the case of the Euclidean plane and for some other
metrics. The proof based on these investigations is more perfect in comparison with the
direct realization of Melzak’s idea.

The first characterization of the MST was also given by Melzak in [108]. In particular,
U is a MST if and only if

(1) U has the vertices Ay,..., An, S1y..., 5k

(2) U is not self-intersecting;

(3) vertices S;, i = 1,...,k, are S-points and lie in the triangles formed by terminal
points Ay,...,An;

(4) the degrees of these S-points are equal to 3 and for the terminal points, do not
exceed 3;

(5)0<k<n-—2

Some elementary properties of the MST, an algorithm to solve the SP forn = 3 and
for some simple configurations with n points are presented-by Kelmans (88].

From the listed properties of the SMT it follows, in particular, that no two edges in
~ the SMT meet at angle less then 120°, and edges incident to S-points meet at 120°. This
fact was an argument for the investigations of Hwang and Wang in [80], where the SP
in the hexagonal coordinate system was discussed.

A full Steiner tree (FST) is a Steiner tree which satisfies the first four properties
mentioned above and for which £ = n — 2. The construction of the minimal length FST
(MFST) is an essential step in the algorithm proposed by Cockayne [29], since any SMT
is a union of full Steiner subtrees. Description of the structure of MFST and a method
of its enumeration serve as the basis of Cockayne’s algorithm.

The use of computer in generating the MFST on a set of points in the Euclidean
plane, where the terminals are vertices of a convex polygon, is demonstrated in [31].
The numerical results are supplied with a FORTRAN program.

Let W be a subset of terminals containing m vertices and n > 2. The FST spanning
W has m — 2 S-points. The adjacency matrix or any equivalent description of the tree
of terminals and m — 2 S-points is called the full topology (FT). It should be noted that
an FT does not specify the locations of its S-points. N

The next after the above mentioned papers of Melzak and Cockayne significant
contribution in the investigations of SPE is Gilbert and Pollak’s paper [66]. It is proved
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that if an FST for a given FT exists, then it is unique. Let f(s) be the number of FT’s
with exactly s S-points and F(n,s) be the number of topologies for trees which have n
terminals and s S-points. In [66] it is shown that

(2.s) ’ Fln,s) = (s + 2)(;:; s —2)l

The total number of full topologies is equal to

T (n (o (n + k= 2)!(m + &)
P [ L e

The authors discussed the problem of reducing an original SPE to some problems with
smaller number of terminals. Seven different properties of ST, which are the basis of this
reduction, were presented. In addition, the well-known Gilbert and Pollak conjecture
on the connection between the length of MST and the length of minimal spanning tree
(SMT) is formulated. The investigation of this conjecture and questions connected with
it are also presented in [66]. We discuss this conjecture and other similar questions in
the last section.

The next attempt in construction of the exact solution of the SPE was undertaken
by Cockayne in 1970 [32]. In that paper he improved his previous algorithm with the
help of some reduction procedures based on some results from [66]. As a result, an
algorithm which can be applied for solution of the SPE with n < 30 is described. The
algorithm reduces first the initial problem to the problems with 6 or less terminals.

Basing on this algorithm and some previous results, Cockayne and Schiller [33] de-
velop a program of solution of the SP which in operation generates the FT's of every
subset W of A and constructs the corresponding FST's (if they exist). All but the short-
est FST's for W are discarded. The shortest connected union of the remaining FST’s
which spans A is the SMT for A. Then the minimal FST is found and, on the basis of
its union, the construction of the SMT for the given set of terminals is carried out. In
this procedure the number of not discarded FST’s is too large for the available storage
even for a relatively small n, and as a result, many subsets of A are processed more
than once.

Extending these investigation, Boyce [16] considers the problem to decide by com-
putation whether there exists the MFST for a given set of terminals, and if so, to find at
least one. Boyce introduces some new definitions with appropriate examples to clarify
the situation of the full ST’s that are not FSMT’s (i.e., not-minimal-length connecting
networks). The author reorganized the computational algorithm to speed up Cock-
ayne’s program. Numerical experiments for n < 10 were presented. A modification of
the algorithm which is able to solve problems with n = 12 is presented in [17].

Winter in 1981 announced the program ‘GEOSTEINER’ for exact solution of the
SPE, which can solve problems with n < 15. ‘GEOSTEINER’ presented in [157] uses
some topological and reduction ideas proposed by Melzak, Gilbert, Pollak, but on the
basis of these ideas a complex construction which uses more fine methods and proce-
dures is proposed. As a result, the question about non-existence or non-optimality of
the FST for a given FT is solved more efficiently, and the above mentioned problems
with storage appear at more high dimensions. For all examined point sets with no more
than 15 terminals, the number of discarded FST’s never exceeded 100 and was usually
considerably less. As a result, the FST's were stored in core, and the formation of their



344 E. N. Gordeev and O. G. Tarastsov

unions was postponed until the FT's of all subsets of A had been processed. The com-
putational experiments are presented for each n, 3 < n < 15 and n = 25. The point sets
were generated with terminals uniformly distributed inside the unit circle. For instance,
all examined point sets with not more than 15 terminals were solved in less than 30
seconds (UNIVAC-1100). For 15 € n £ 20, the SMT's were not obtained within this
time. The author assumes that a more efficient procedure for the formation of FST’s
could improve the overall performance of GEOSTEINER.

Cockayne and Hewgill proposed in [34] a further improvement of this algorithm at the
expense of connection to it a reduction procedure at first stage. As a result, about 70%
of problems with 30 points were reduced to problems on 17 and less points, which then
GEOSTEINER was applied to. The total time of calculations did not exceed 200 sec.
This reduction enables the second part to process considerably faster. The machine
times depend heavily on the geometry as well as on n. Computational experiments
indicate that the increase in problem size from n to n + 1, 10 £ n < 17, causes at least a
doubling of average computational times for GEOSTEINER without this improvement,
and the value n = 17 was the limit for reasonably quick (200 sec.) solutions of randomly
generated problems.

Thus, two main directions of investigations, an exhaustive search of the FST and
reduction methods, lie on the basis of the listed algorithms. That is why a number of
publications is dedicated immediately to the reduction procedures.

At present, only three different main reduction procedures for the SPE exist. The
first procedure was proposed by Gilbert and Pollak [66]. Suppose two lines intersect at
120° and cut the plane into two 60° wedges and two 120° wedges. Let R; and R, denote
the two closed 60° wedges and let z denote the point at which R; and R; meet. Let
F; denote the set of fixed points in R;, : = 1,2. If F{UF, = A, then the SMT on A is
the union of the SMT on Fj and the SMT on F; and the shortest edge connecting Fy
and Fg.

The second decomposition theorem, as mentioned above, was presented by Cockayne
[32]. Let P, denote the convex polygon which is the boundary of the convex hull of A.
Let (p,gq,7) be a triple of fixed points such that p and ¢ are on P, r is either on or
within Py, £pgr > 120°, there are no other terminals within the triangle pgr. Let P,
denote the polygon (called the Steiner polygon) obtained by deleting the triangle pgr
from P,. We can now substitute P; for P; and proceed. If no more such triples pgr can
be found, we obtain the Steiner hull of P. Suppose that for some P, the triple (pqr)
we find is such that r is also in P.. Let fi,..., fm, fi denote the ordered sequence of
terminals on P, where f; = p, fis1 = ¢, f; = r, 1+ 1 < j. Let F denote the set of
terminals bounded by the polygon fi,..., fiy fis---, fm, f1, and let F; denote the set of
terminals bounded by the Steiner polygon f;, fi+1,..., fi-1, f;. Then the SMT on F'is
the union of the SMT on F; and the SMT on F.

The third method of decomposition is described in the recent paper [81]. Let
P(z;,...,zm) deniote the polygon whose vertices are z;,...,zm. Let P(A) denote the
Steiner polygon and let a,b,c,d be four points on P(F) such that P(a,b,c,d) is a
convex quadrilateral, £a > 120°, b > 120°; let the two diagonals meet at 0, then
Zboa > Za + £b > 150°. Then the SMT on A is the union of the SMT on F; and the
SMT on F; and the edge [a, b] where Fy (F3) is the set of terminals lying inside the area
bounded by P(F) and (e, 8] ([b,c]) and outside P(a,b,c,d).

This decomposition theorem can be considered as an extension of Cockayne’s result
consisting in the transition from deleting a triangle to deleting a quadrilateral. The
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authors think that this result provides a 50% increase in the potentialities of the decom-
position theorem. But up to now there is no exact algorithm based on this result.

Generation of the ST is the subject of the paper [79]. The approach proposed in
that paper is an extension of Melzak’s procedure.

Now we turn to some heuristic algorithms for the SPE which are proposed in [20,
88, 90, 132].

Kelmans in [88] describes an evident local algorithm for generating an approximate
solution by sequential addition of terminals to the fragment constructed on the previous.
stage of solution.

In Korhonen’s algorithm [90] a minimal spanning tree is transformed into the ST.
Chang [20] develops an iterative procedure which, when applied to an MST, constructs a
tree with certain desirable properties. For n < 4 this algorithm converges to the proper
tree. Experimental studies for n < 30 seem to indicate that it yields good suboptimal
solutions to the SPE. The problems with not more than 100 terminals can be handled
(IBM 360/65). This algorithm is iterative in nature and can be terminated at any stage.

One of the most efficient heuristics is suggested in [132]. This algorithm constructs an
approximate solution in time O(nlogn). It incorporates two phases: a reduction and an
expansion. Initially, the set A is triangulated. Within each triangle, the local optimum
is found. This triangulation is the Delaunnay triangulation and demands O(n logn).
The second phase is based on the properties of the Voronoi diagram and the minimal
spanning tree. During this phase, the solutions for each triangle are reconstructed into
the solution for A in time O(nlogn) (constructing the SMT takes O(nlogn) time and
the concatenation process takes O(n) time). Computational experiments for n < 50 are
presented. All problems were solved in less than 1.5 sec. The ratio Lsur/Lumst for the
O(nlogn) algorithm is at least as good as for the previous O(n*) algorithm. We denote
the lengths of minimal Steiner tree and spanning tree by Lsyr and Lmst respectively.
The same approach was used for solution of the problem on the surface of a sphere
[169].

When NP-completeness of the SPE had been proved, some authors began to pay
more attention to the polynomial solvable special cases of this problem. Thus, in [65]
Georgacopoulos and Papadimitriou proposed a method of solving the SP with complexity
O(n?) in which only one S-point is allowed. A method of dividing the plane into O(n?)
regions in such a way that, when a new S-point is added to each of this region, the
resulting SMT has a fixed topology, formed the basis of this algorithm. The optimal
allocation of a new point within the region can be found in a constant time per region.

Provan [116] investigates the SPE with the additional property of convexity, i.e., the
terminals lie on the bound of a convex region. The SPE is NP-hard, i.e., in the general
case there is no fully polynomial approximation scheme (i.e., an algorithm which for
any A and any ¢ > 0 in a polynomial time with respect to n and 1/e finds a ST such
that the ratio of the length of this ST to the length of SMT does not exceed 1 + ¢) if
P # NP. But in the above mentioned special case Provan presents a fully polynomial
approximation scheme for the SPE. This algorithm takes O(n%/e*) time.

Let R be a polygonally bounded region of the plane, i.e., a connected closed region
of the plane, whose boundary is made up of a finite number of straight-line segments,
and we have to find the SMT for A in R, i.e., a spanning graph for A in R having the
minimal length. An algorithm of the solution of the SPE for terminals within such a
region is constructed in [117]. That paper extends the previous result [116] to the SMT
with restrictions.
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Three simple special classes of terminals are considered in [43, 45, 88]. Here ana-
lytical formulae for the length of SMT are presented.

In [45] the set of points lies on a circle with at most one large distance between two
consecutive points. In [43] the terminals are the points of intersection on a regular zig-
zag lines, ie., a connected sequence of line segments which turn in alternate directions
with a constant angle.

As it has been said in Introduction, a number of papers are dedicated to the problems
whose titles have the term Steiner problem. For example, the following publications can
be quoted.

Trietsch [142, 143] considers two problems, which he calls generalizations of the SPE.
In the first problem [143] it is required to interconnect N networks on the plane by the
set of edges of the minimum total length. The edges are straight segments, and it is
possible to make connections with the vertices of the networks or with any points of the
edges. The use of S-points is also allowed. The author proposes a finite algorithm for
this problem similar to those used for the SPE [33]. This problem can be generalized
in order to include flow-dependence costs for various links (see Section 6). In the case
of single nodes as degenerate networks this problem is reduced to the SPE. If exactly
one of these networks is non-degenerate, we obtain the Steiner network augmenting
problem [142]. In that paper the author proved that the problem can be solved in finite
time with the help of the technique used for the SPE.

The analogue of SPE in which terminals are simple polygons is considered in [30].
In [104] the case of two-criterion SP is studied. The surveys of applications of the SP to
technology, circuit design, etc. are presented in {92, 102, 104).

4. THE STEINER PROBLEM IN THE PLANE WITH RECTILINEAR METRIC

If in the previous statement of the problem the rectilinear metric substitutes for the
Euclidean one, the rectilinear Steiner problem (RSP) is obtained. In this case the ST
covers terminals using only vertical and horizontal lines. Here the distance between
two points with coordinates (zi, y:), (z;,y;) Is equal to |z; — z;| + |y; — y;|. S-points are
also allowed. The problem is to find the rectilinear Steiner tree with minimal length
(RMST). -

In particular, the papers (70, 73, 74, 92, 100] are dedicated to numerous applications
of this problem.

In the next section the SP’s in networks are discussed:: The RST was originally
formulated by Hanan [71]. In that publication Hanan proves that the RSP is a special
case of the SPN. More exactly, let two sets of real numbers X = {z,,...,z,-1} and
Y = {yo,...,yn-1} be given. The points of the plane whose first coordinates belong to
X and the second coordinates belong to Y are the vertices of the grid graph G = (V, E),
and two vertices (z;,y;), (zx, yi) are connected by an edge if and only if |i—k|+|j—{| = L

The ordered sets of the first and second coordinates of the terminal vertices form
sets X and Y, the grid graph on the terminal vertices is denoted by G(A). Hanan
proves that the SMT in RSP is a subgraph of G(A). Thus, all results which are related
to the Steiner problem in networks are applied to the problem under consideration.
But due to historical reasons-and to the features connected to applications, the given
problem is traditionally investigated separately. This problem, as Garey and Johnson
[63] showed, is NP-complete. The publications devoted-to this problem consider either
beuristic methods or polynomially solvable special cases. And exact methods of its
solution which are of no applied interest are studied in the general range of the SPN.
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A brief survey of heuristics is presented in the introduction to Richards’s paper [120]
and in Winter’s paper [161], who considers the given problem as a special case of the
SPN.

Some special properties of the RST are studied in (25, 54, 63, 71, 72, 73, 75, 76, 106].
Exact methods of solution are proposed in [71, 166]. For the case of arbitrary n there
exists only one exact algorithm devoted specially to RSP, proposed by Yang and Wing
[166]. It is based on the branch-and-bound method and proves to be applicable only
for n < 10. In that paper a suboptimal branch-and-bound algorithm is proposed, which
proved to be applicable for n < 30. The comparison with the known exact algorithm
shows a remarkable closeness of the characteristics of this algorithm to the optimal
values [167]. It simply uses Prim’s algorithm [114] but instead of choosing one of the
two possible one-bend orientations of a new wire it explores both.

Hwang’s result [75] (if for a set of terminals A there is no SMT, with terminal
degrees more than one, then there exists a solution which has one of two fixed topologies
described in the paper), which characterizes the SMT for one class of RSP, can be used
in construction of algorithms to solve the SP. A simple proof of this theorem is given
in the recent paper by Richards and Salove [174]. In the above mentioned paper [71]
Hanan formulated and proved for this problem properties (1)—(5) which were similar to
the properties pointed out for the case of SPE (see Section 3). In addition he studied
in detail exact methods for n = 3,4,5. A heuristic algorithm with complexity O(n?) is
proposed. This problem is discussed in the paper [73] too.

This heuristic which was the first heuristic for the given problem is a generalization of
Prim’s algorithm. The terminals are numbered in increasing order of the first coordinate.
The heuristic begins with the vertices A, and A; and connects A; and A; by the shortest
paths in G(A). From the set of such paths it selects one having the largest portion
coinciding with the line z = z,. If the partial tree T} for A4y,..., Ax has been constructed,
Ag+1 is added to Tk by the shortest path having the largest portion coinciding with the
line z = zx+1. If T spans A, the heuristic terminates.

We give a detailed description of this method because its modification proposed in
[120] is the basis of the heuristic for RSP which is the best at the moment. The improve-
ment of the algorithm takes place on the stage of the connection of a terminal and the
constructed fragment due to looking through a number of additional variants. For each
new point, the set of O(n) terminals, S-points, corners and wires of the current tree must
be inspected and the shortest wire is determined in linear time. This leads to an O(n?)
runtime. It is shown that this method has the O(nlogn) runtime using computational
geometry methods. But in the case of sequential searching it takes O(n?) time in the
worst case. However, it is shown that this approach runs in O(n*?) expected time, for
n points randomly selected from a p x p grid. Empirical results are presented for the
problems -up to 10000 points. A comparison with another heuristics shows pronounced
superiority of this method (see Table 1).

Fu [62] developed the heuristic transforming the SMT by deleting on each step the
path in the spanning tree which contained in its interior only S-points of degree 2 (if any),
and by reconnecting the resulting components by another path in a special manner. Fu
claimed that this heuristic produced an optimal solution, but this assertion was disproved
by Hanan [72]. |

Smith and Liebman [129] suggested an O(n*) heuristic. It begins with selecting
a linear- sxzed subset of n? vertices as candidates for S-points, then these vertices S;,
t = 1,...,n?% are sorted in the non-decreasing order of costs of the SMT for AU {S;}
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and, as a result, in some cases a current SMT is replaced by the SMT for AU {S;}. The
authors also suggest three different ways of selection the subset of S-points which seem
to be comparable to one another with respect to both average execution time and costs
of obtained suboptimal solutions.

In [130] an O(nlogn)-time approach is proposed, which is based on an iterative
improvement of the rectilinear SMT found with the help of the Delaunnay triangulation.

+ In [101] the so-called single net wiring problem as a SP in graphs with the rectilinear
metric is formulated. An algorithm to find a suboptimal solution satisfying only the
minimum length constraint is described and the obtained resuits are compared with the
existing algorithms given in [114, 167], adapted for the rectilinear case. This algorithm
uses a three point connection scheme instead of joining the nearest unused vertex and
runs in O(n?) time. The size of nets for computational experiments ranges from 5 to 35
points.

Hwang [77] proposed an O(nlogn) modification of the heuristic from [101]. This
improvement of the runtime due to the following resuit.

Shamos and Hoey in 1975 used some properties of the Euclidean distance to de-
velop an O(nlogn) algorithm for the construction of the Voronoi diagram for A based
on the divide-and-conquer method and then derive the minimal spanning tree from the
Voronoi diagram in less than O(n logn) time. While deriving a SMT from the Voronoi
diagram is valid for an arbitrary distance, the algorithm for the Voronoi diagrams de-
pends critically on the distance function. Hwang [78] gives an O(nlogn) algorithm for
the Voronoi diagrams for the rectilinear distance and obtains an O(nlogn) algorithm
for the rectlinear minimal spanning trees. He uses standard divide-and-conquer tech-
niques. In the algorithm from [101] an auxiliary procedure for the SMT in O(n?) time
is used, but Hwang uses O(nlogn) procedure instead of this one.

Bern and de Carvalho [8] investigated Kruskal’s based approaches [96] suggested by
Thompson. Thompson’s algorithm is executed in O(pn?logn) time and its variations
take O( pn?) time.

It is accepted for the comparison of algorithms to use the ratio (in percent) (L'~ L)/ L,
where L is the length of MST, L’ is the length of ST Wthh is a result of the heuristic.
This ratio is cailed the percentage.

In Table 1 the results of comparison of seven heuristics are presented [120).

Servit’s paper [126] is of applied interest. Servit compared the-performance of several
simple heuristic algorithms in a large number of examples of real problems of printed
circuit boards. Such experiment is considerably more natural and informative than

Table 1.
Ref. = Investigators Year Time, sec. Problem size Percentage
(166] Yang, Wing 1972 185 35 11
{(129] Smith, Licbman . 1979 34 40 7
[130] Smith, Lee, Liebman 1980 1 40 8
[101) Lee, Bose, Hwang 1976 5 35 9
(771 Hwang 1979 - - 9
(8] Bern, Cavalho " 1985 1 40 9
(120] Hanan, Richards 1989 56 10000 4
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examples with random sets of points. In this case the computational experiment may
give quite different results in comparison with the uniformly distributed instances. Let
us give a brief resume of this investigation. The following eight heuristics are com-
pared. STAN algorithm is the straightforward generalization of the Prim algorithm of
complexity O(n?). HAN1 and HAN2 algorithms are suggested by Hanan [79] and have
the runtime O(n?). SRV1 and SRV2 are straightforward simplifications of HAN1 and
HAN?2 algorithms. The simplification consists in the fact that the shortest path is not
constructed between a next vertex and the current tree but between this vertex and
the path constructed in the previous step. Since the ordering can be implemented in
O(nlogn) time and the remaining steps, in O(n) time, SRV1 and SRV2 are O(n logn)
algorithms. RECT is based on the computation of the semiperimeter of the smallest
rectangle enclosing A. Some results related to this method are obtained by Chung and
Hwang [26] (see Section 6). AVBR is based on the estimation of the length of MRST
and has the complexity O(n?).

The analysis of experimental results leads to the conclusion that the AVBR algorithm
provides, in all the parameters investigated, worse results than the SRV1 algorithm.
Similarly, by virtue of the comparison with the HANZ2 algorithm, the PRIM and STAN
algorithms can be excluded. The SRV2 algorithm can be excluded by comparison with
the HANT1 algorithm. With regard to computational time, the algorithms can be ordered
as follows: RECT, SRV1, HAN1, HAN2. Quite an opposite order is obtained when the
quality of the results is considered.

A survey of recent publications and algorithms for the RST problem concerning the
applications of these algorithms to the problems in circuit design are given in [92].

Two probabilistic partitioning algorithms for RST problem are obtained in [89]. The
algorithms subdivide n given points, uniformly distributed on the unit square [0, 1] x [0, 1],
into small groups, construct the minimal RST for each small group and then patch the
subtrees together to form a near-optimum RST. Let Ty be a minimum RST and T3, T
be rectilinear spanning trees constructed by the algorithms. Based on the probabilistic
approach introduced by Karp for the Euclidean travelling salesman problem, for any
given integer ¢t > 0 the first algorithm runs in O(f(t)n + nlogn) time and produces
Ty such that Lt /Lr, < 1 + O(1/+/t) with probability approaching 1 as n — oo while
the second algorithm has an expected running time O(g(¢)n) and produces T3 such that
Lt,/Lt, £ 1+ O(1/t) with probability approaching 1 as n — oo.

Now we proceed to polynomially solvable special cases of the RSP.

In the above mentioned paper [116] Provan gives a definition of the rectilinear con-
vexity, which means that the terminals lie on the boundary of a rectilinear convex region.
For this problem an exact algorithm of complexity O(n®) is constructed. The same result
is obtained for the SPN too.

The RSP for the special constructions (ladders) is considered by Chung and Graham _
in [23].

A subnetwork G(A) is called a rectangular tree (RT) if it can be obtained using the
following recursive construction. The right angle (a connected network whose edges lie
on the sides of the right angle) is a RT. Another right angle can be added to the available
RT by identification of an edge of this angle with that one of the edges of RT which
lies on the outer face in such a way that vertices of degree 4 are not originated. The
minimum distance RT is such a RT that the distances between any pair of vertices in
RT itself and in G(A) are equal. The description of all classes of such RT's is obtained
in [54]. The main result of the paper [54] is the proof that the existence of the minimum
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distance RT spanning all terminals involves the existence of SMT with the same length,
Since RT(A) is an outerplanar graph, the linear time algorithm can be applied. The
authors completely enumerated all classes of the minimum distance RT’s. Note that
Winter [161] was the first who had announced this result.

In [2] two special cases in which the elements of A all occur either on parallel lines
or on the boundary of a rectangle are considered. For the first case a linear algorithm
and for the second one a cube algorithm were obtained. .

A linear algorithm for the second case was presented in [35]. The authors prove
that the RMST in this case necessarily has one of the ten fixed topologies, and the
consideration of the SMT in each of these topologies is carried out in linear time. The
same result was obtained by Agarwal and Shing [1]. Their algorithm is similar to that
one from [35].

Trubin [141] investigates a subclass of SP in the plane with a special metric (rectan-
gular metric) and suggests a polynomial algorithm for this subclass.

5. STEINER PROBLEM IN NETWORKS

The statement of the problem has already been presented in Introduction. In this case
for undirected network G = (V, E, c) with p vertices, m edges, a cost function c: £ — R
and ACV ([V]|=p=n+s,]|4| =n,|S| =s, |E|] = m), we have to find a subnetwork
G 4 which spans all vertices of A and the sum of its edge costs takes the minimum value.
This subgraph is called the minimal Steiner tree (SMT). The vertices belonging to V' \ A
are called S-points (S-vertices, Steiner vertices)

The main attention in this section will be paid to the results obtained after 1985.
However briefly we will try to give a related picture of results available in this field.
The full picture containing the detailed description of algorithms can be obtained from
Winter’s survey [161], Voss’s monograph [146] and Maculan’s survey [1095].

Hakimi [69] was the first who had formulated the SPN and presented a topology
enumeration algorithm. Hakimi's approach is similar to Melzak’s one for the SPE. In
Hakimi’s approach one calculates the minimal spanning tree for each of the possible
subsets of points starting with A and ending with V. To calculate the minimal trees, the
method of Kevin and Whitney is used. The algorithm runs in O(n®2* + (n + k)?) time.
Hakimi states that his algorithm requires O(n*) if n — k < 2logn.

Levin’s method [102] uses the general combinatorial optimization approach of dy-
namic programming and is based on the computation and storage of the total weight of
the minimal spanning tree for each possible subset of points. These weights are calcu-
lated iteratively, the weights at the kth stage being derived from the information gained
at the (k — 1)th stage. It takes O(3"(n + k) + 2"(n + k)log(n + k) + m)) time.

The algorithms constructed by Dreyfus and Wagner [41], Bern [13], Lawler [99),
Ericson et al. [S3] are also based on the dynamic programming. The method of Dreyfus
and Wagner successively decomposes the problem into progressively smaller and smaller
subproblems until each final subproblem can be solved by forming the matrix of shortest
paths between all pairs of vertices in G. Only the optimal solutions for relevant subsets
of points are constructed. .Each optimal solution is stored and may be used in the
calculation later. This algorithm runs in O((n + k)3 + (n + £)22F + (n + k)) time.
The Lawler’s algorithm takes O(2"k* + (n + k)?log(n + k) + m) time. In the paper [S3]
a similar dynamic programming algorithm for a more general problem of finding the
minimal cost flow in a network with additional restrictions is proposed. Application of
this algorithm to a case of SP in a planar network in which all terminals lie on a single
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face leads to a polynomial-time algorithm with complexity O(nk® + (nlogn)k?). And if
the number of faces, on which the terminals lie, is equal to f, then the complexity is
O(nk + (nlogn)k?/). It should be noted that Provan [116] independently dxscovcred
the polynomial algorithm for the case f = 1.

Bern [13] improved the result of the paper [53] and obtained an algorithm with
complexity O(nk?*! + (nlogn)k?/). He also gives other bound of the complexity of the
algorithm from [53] which is exponential only in the number of required nodes that do
not lie on a common facial boundary. The SP for the planar network embedded in the
plane such that w terminals lie on the boundary of the infinite face can be solved in
time O(nw?3F~* + (nlogn)w?25-v).

In particular, from this result a polynomial O(w3k?3%~") algorithm for the RSP fol-
lows. This is an improvement of Provan’s result [116].

The third approach to the exact solution of SPN was presented by Aneja [3]. He
formulated a SPN as a set covering problem and used a modification of the cutting plane
algorithm for the general set covering problem proposed by Bellmor and Ratliff and the
dual simplex algorithm in the relaxed linear program associated with the integer pro-
gramming problem. He also used some heuristic rules for improving the computational
efficiency of the algorithm.

Foulds and Gibbons [57] presented a tree search procedure based on a bound derived
by finding for each terminal the minimum cost of connecting that vertex to some other
vertex. Computational experiment indicated that only relatively small problems can be
solved.

The method suggested in [128] also employs the integer programming technique of
branch and bound enumeration. The procedure systematically examines a series of
partial solutions and bounds used to discard the partial solutions which cannot be a part
of the minimal ST. ;

Some of the above mentioned algorithms are compared in [58]. The algorithms
were coded in ALGOL and ran on Burroughs B6700. Results of the computational
experiments are natural with the point of view related to their complexity. The algorithm
of Dreyfus-Wagner dominates Levin’s algorithm. The other results are given in Table 2,
where * denotes that the time of calculations exceeded 100 sec.

Table 2.
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k£  Dreyfus, Wagner Hakimi Shore Dreyfus, Wagner Hakimi  Shore

o

5
1
<1

910 1-3

35-36 16-36 -

F ]
88 82-95 12-29
2

=

45-46 72-100

BEBHEHNRERBEB S
BHuwubh8uwowumuw
-aani&n\o/\
PSRRI I N TS S

(= 0

7 5348




352 E. N. Gordeev and O. G. Tarastsov

Note that the running time of Aneja’s algorithm for the problems with n < 50,
k <20, m < 60 was in the range of 40 sec. But, for example, he could obtain an exact
solution only of four problem among ten attempts for n = 50.

Yang and Wing [165] develop an algorithm which is similar to Shore’s algorithm but
is less efficient.

Beasley [6,7] proposed three algorithms for the exact solution of SPN, which was
considered as a problem of a zero-one integer programming and was solved by using
the Lagrangian relaxation. The algorithm for the shortest path problem and subgradient
optimization were used in an attempt to maximize the lower bounds obtained from the
Lagrangian relaxations of the problem. In [6] computational experiment with n < 50,
- m < 200, k £ 50 are presented. In (7] the SPN is formulated as a shortest spanning
tree problem with additional constraints. By relaxing these additional constraints in the
Lagrangian fashion the author obtains a lower bound which can be used in a tree search
procedure for the problem. Problem reduction tests derived from both the original prob-
lem and the Lagrangian relaxation are given. This algorithm solves problems involving
the connection of up to 1250 vertices in a graph with 62500 edges and 2500 vertices.
Numerical experiments were carried out with FORTRAN program on Cray X-MP/42.

The same approach is considered in [115, 163], but for the calculation of the lower
bounds another procedures are used. Wong in [163] investigated the SP in directed
graphs. In this problem the minimal directed subtree that connects a root node to every
terminal node is required. The author gives a procedure for obtaining lower bounds for
the minimal ST. Computational results indicate that the method is effective in solving
problems containing up to 60 nodes and 240 arcs.

Liu [103] also considered a lower bound for the SP in directed graphs. He presented
a new integer programming formulation. Wong’s algorithm is used as a subroutine. Also
some simple heuristics are used to obtain upper bounds. For every problem with fixed
number of nodes and terminals, 10 asymmetric directed graphs are randomly generated,
the average running time in the case of p = 100, n = 40 is 200 sec.

In {110] the Steiner problem for directed graphs without directed cycles but with
a node from which a directed chain emanates to every other node is considered. An
algorithm to solve SP in such graphs is given. It is an algorithm to solve a linear zero-
one programming problem. The algorithm was realized on CDC-6600, the results are
given for p < 320, n < 100.

- Whereas in the previous approaches the main attention was paid to obtaining lower
bounds, particularly to the method of Lagrangian relaxation, the other direction, well
developed at present, concerns with the development of reduction procedures. These al-
gorithms are more simple in realization and allow us to solve the problems of sufficiently
large size. The papers (5, 50, 51, 82| concern this approach.

In [82] a reduction procedure based on a heuristically derived upper bound of the
length of SMT and its extension to the SP with degree-dependent costs are presented.

_ Balakrishnan and Patel [S] give some characteristics of the optimal solutions of SPN
and propose a reduction procedure based on these properties. Also they derive an es-
timate of the expected reduction achieved by this method under a set of probabilistic
assumptions and demonstrate that their scheme produces asymptotically optimal reduc-
tion. All programs are coded in FORTRAN and the SMT is calculated using Kruskal’s
algorithm [96]. The results are given for n < 20, k£ < 30, m < 60. They also propose a
tree generation-algorithm that exploits the special structure of the SPN to construct its
constrained minimal spanning tree. -
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The papers [50,51] improve the existing tests for the reduction of the SPN size by
eliminating vertices from the graph and develop new techniques based on the bottleneck
approach. The latter include optimal edge detection, edge elimination and node elimi-
nation. Computational experiments are considered in detail. All programs were coded
in PASCAL. The problem size is ranged to p < 200, £ < 100, m < 4950. The edge
densities vary from sparse to complete with uniformly distributed random Euclidean
weights. The algorithm solves the majority of the test problems by reduction tests only,
and reduces the size of the remaining problems to at most one fourth of the initial size.

In [124] an original analogue method for the SPN based on the thermodynamic
simulation is proposed.

Now we proceed to the heuristic algorithms. It should be noticed that some of the
above mentioned exact algorithms, if they are interrupted on some step, can be used as
a heuristic. For example, Aneja [3] and Wong [163] constructed heuristics on the basis
of their algorithms. These heuristics are called a set covering heuristic and a dual ascent
heuristic.

The set of the existing at present heuristics can be divided into the following classes.

The heuristics on the basis of the shortest path problem. The first shortest path heuris-
tic was developed by Takahashi and Matzuyama [138]. It computes a ST by combination
of the processes of finding the shortest paths and finding the SMT. The procedure of
finding the SMT is analogous to the procedure presented by Prim [114] for graphs with-
out S-points. The algorithm runs in time O(kp?®). As shown in [138], the worst case ratio
of this heuristicis 8 = L'/L = 2(1 — 1/k), and this estimation is attainable. Shaochan
[127] suggested a modification of this heuristic.

The heuristics on the basis of the distance network. A distance network heuristic
was given independently in [52, 93, 112]. This heuristic is a generalized version of the
SMT for A. The algorithm first finds all the shortest paths between vertices in A, and
then computes the SMT for A based on the distances of these paths. This algorithm
has the worst case time complexity O(kp?) and the worst case ratio of this heuristic is
g =L'[L =2(1-1/l), where [ is the number of leaves in the SMT.

Plesnik [112] and Sullivan [136] propose a modification of this method with the help
of a preliminary increase of the subgraph for the shortest path procedure by adding ¢
S-points. It takes O((p—k)7k* + p*) time, and the worst case ratio tends to 2—q/(k —2).

In [164] the approach of [93] is used, with Kruskal’s algorithm instead of Prim’s
algorithm and another combination of the both stages. The complexity of this algorithm
is O(mlogp). This algorithm is especially effective for sparse graphs.

Widmayer [156] suggested a modification of this method; this algorithm computes
an approximate solution of SPN in time O(m + (p + min(m, k%)) log p), with the worst
case ratio no more than 2(1 — 1/1).

A further improvement of this algorithm was proposed by Mehlhorn [107], where
the complexity fell tll O(plogp + m). The worst case ratio in this method is no more
than 2(1 — 1/1) too. -

In [97] the SPN is investigated from the probabilistic point of view. Assuming the
edge probability for a random graph, they investigated the problem in this setting and
presented a lower bound for the optimal solution that holds for almost all graphs. Two
different polynomial algorithms, one of which was proposed in [92], are used for the cal-
culation of this bound. The authors show that the solution achieved by these algonthms
are very close to the lower bound.
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The heuristic of Kou and Makki [94] also belongs to this class and is a further
development of the previous algorithms. Its worst case ratio is the same as in the
previous cases, and the complexity is

O(m + klogk + tlog a(t, k)),
where ¢ = min(m, k(k — 1)/2), a(t, k) = min{i: log® ¢ < t/k}.

The average distance heuristics. The first average distance heuristic was suggested by
Rayward-Smith [118]. For the cases k = p and & = 2 this algorithm produces an exact
solution. At each iteration, the heuristic examines the list of trees which will be subtrees
of the final tree. Initially the list consists of isolated terminals. Using a special distance
function for calculating distances between nodes and trees, two subtrees of the list are
selected and joined by the minimum cost path in G. Hence, after k£ — 1 iteration, the list
contains just one tree spanning all terminals. The complexity is O(p*). Experimental
results show that this method performs satisfactorily in the rectilinear case.

Testing this algorithm, Waxman [152] proves that in the worst case its solution time
is twice as great as the optimal one and this bound is attainable.

Multiple source shortest path heuristic. The Wang’s algorithm belongs to this class of
heuristics [151] and computes a ST by linking closest subtrees of G. It starts with every
vertex in A being a tree and ends when all vertices in A belong to the same tree. The
runtime is O(kp?) in the worst case, and it is O(p?logk) in the best case and on the
average, under suitable assumptions. The quality of this algorithm is bounded as that
of the algorithm from [93].

Rayward-Smith and Clare [119] carried out a detailed comparison of the three classes
of heuristics. They took the algorithms of the papers [93, 118, 138]. The results are quite
natural, for example, the first one gives the best result in quality and runs in the longest
unme.

Polynomially solvable cases of SP are investigated in [4, 10, 19, 37, 38, 115, 116, 121,
147, 148, 154, 155, 160].

The case of the series-parallel networks was discussed in Section 2. The linear
algorithms for SPN in this case are described in [115, 148).

Outerplanar networks are investigated by Wald and Colbourn [147]. A graph is
outerplanar if it can be embedded in a planar graph such that all its vertices are on
the exterior face. Every outerplanar network is a series-parallel network, therefore the
linear algorithm for this case is a special case of the previous one.

The Halin network is obtained by a planar embedding of a tree and then by adding
the edges between the consecutive leaves to form a cycle. Winter [160] constructed the
linear algorithm for the SPN in the Halin networks.

The polynomial algorithms proposed by Bern [10, 13] and Provan [116] for networks
with all terminals belonging to a fixed number of faces have been mentioned above.
Provan [173] paid attention to the constructions (called Steiner hulls) joining algorithms
to solve SPE and SPN.

A network, whose every. cycle with four or more edges has a chord and every even
cycle with six or more edges has a chord dividing the cycle into two paths, each containing
an odd number of edges, is called a strongly chordal graph. The algorithm for SP of
complexity O(n?) for this class of networks with the unit cost edges was developed in
(154, 155]. The same restrictions on the weights are considered in [37], but an additional
homogeneity restriction is imposed on the structure of the network. A set of two or more
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nodes such that any remaining node in G is adjacent either to all or to none of its nodes,
is called a homogeneous set of nodes. The main result of [37] states that an instance
of the SPN on G is polynomially reducible to an instance of the same problem on an
induced subgraph of G whenever G contains a homogeneous set of nodes. This fact
allows us to solve in polynomial time the SPN on a class of graphs defined in terms
of homogeneous sets. A polynomial algorithm for the recognition such graphs is also
ven.
g A graph is distance-hereditary if each cycle of five or more vertices has at least two
crossing chords (where (u,v) and (w, z) cross if the vertices u,v,w, z are distinct and
placed in this order on the cycle). D’Atri and Moscarini [38] proposed a polynomial
algorithm for the SPN in such graphs with unit-cost edges. This algorithm takes O(mp)
time.

Bern and Plassman [12] constructed an algorithm with § = 4/3 for the SPN in the
case of complete network with edge lengths equal to 1 or 2.

Some generalizations of the SPN are studied in [49, 95, 125, 142, 143, 145, 153, 158,
159]. But there we have the same situation as in the case of SPE and we do not discuss
it in detail, but present only the references and some examples.

The SPN in the digraph is a natural generalization of the SPN. This problem was
considered above. A heuristic algorithm for this problem using the ideas from the
papers [5, 6, 7] is proposed in [172]. Besides, the k-best spanning trees are constructed
for obtaining an upper bound. Numerical experiment was carried out for n < 300.

Krarup (95] formulated the generalized SPN as follows. For an undirected graph G
and a set of terminals A an n x n matrix R = (r;;) of required local connections between
terminals is given. We find a sub-network G, of G such that every pair of terminals
is locally r;;-connected and the total cost of G4 is minimal. Obviously, this problem is
NP-complete. Winter developed linear time algorithms to determine 2-connected and
2-edge-connected G4 when G was an outerplanar [158] or series—parallel [159] graph.
He also announced a similar result for the Halin networks [161].

The node-weighted SPN, in which the weights are assigned both to nodes and to
edges, and the weight of ST is equal to the sum of the weights of its nodes and edges,
is one more generalization.

Segev [125] deals with a special case of this problem, where n = 1 and weights of
all S-points are negative. This problem remains NP-complete. Lower bounds of the
optimal solution and heuristic procedures are proposed.

Duin and Volgenant [49] develop an algorithm for the node-weighted SPN based on
reduction tests. They also give a transformation showing that this problem is a special
case of the SP in directed graphs, and present a new generalization, the Steiner forest
problem (in which for given s we find the subgraph of the minimum total weight that
consists of at most m components each containing at least one terminal). The same
authors in [170] considered the SP with two weights-on each edge and proposed two
heuristic algorithms using reduction procedures. The complexity of the both algorithms
is O(kn?).

6. THE GILBERT-POLLAK CONJECTURE AND SOME PROPERTIES OF SP

In [66] Gilbert and Pollak formulated a conjecture on the ratio between the length of
the minimal spanning tree and the length of the minimal Steiner tree. Let Ls(A) be the
length of the minimal Steiner tree on a set of terminals 4;,..., A, and L (A) be the
length of the minimal spanning tree for these points. Gilbert and Pollak conjectured
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that for any set of n points on the Euclidean plane,
Ls(A)/Lm(A) 2 V3[2.
The Steiner ratio is defined to be
pn = inf{Ls(A)/Lm(A): A,]A| = n},

where the infimum is over all allocations of n points on the plane.

In the same paper the conjecture was proved for the case n = 3. Besides this, it was
proved, using Moor’s result, that p, > 1/2 and Ls(A)/Lm(A) = +/3/2 in the case where
the terminals were the vertices of the equilateral triangle.

Pollak [113] investigated the properties of SMT for the case n = 4. Pollak’s approach
is to consider all the possible patterns of minimal trees on n points (there are five pattern
for n = 4) and to give a separate proof of the conjecture for each distinct pattern. A
different approach and a very short proof for the case n = 4 is given in [44].

In [46] the authors with the help of this approach proved the conjecture for n = 5.

Rubinstein and Thomas (175] reformulated the conjecture as a variational problem in
which the vector of 2n coordinates of the terminals in R* was disturbed. This approach
was the basis of an interesting and original proof of the conjecture for n = 3,4,5. In
[176] using the same technique the authors proved the conjecture for n = 6.

Kallmann [86] proves that the length of any ST with only one S-point is not less than
(v/3/2)Lag(A) for any n.

The estimation of Lg(A)/Lar(A) > 1/2 for an arbitrary metric space was obtained
in {66]. Graham and Hwang [68] proved that p, > 0.5771... for any set of n points in
the d-dimensional Euclidean space.

For arbitrary n in the Euclidean plane Chung and Hwang (24| obtained the relation
pn > 0.74300..., and Du and Hwang in (42] proved that p, > 0.8. Chung and Graham
(27] improved this estimation and showed that p, > 0.82416.

And finally in [24] Du and Hwang proved the conjecture. They used some ideas from
the above mentioned papers of Rubinstein and Thomas. They considered a family of a
finite number of continuous concave functions {g:(z)}, ¢ € I, on a polytope X and the
- problem of minimization of the function f(z) = max;¢s ¢:(z) on X. The authors showed
that the minimum value of f(z)* was attained at a finite number of special points in X.
As an application, they proved the long-standing conjecture.

For the spaces of an arbitrary dimension 4 with Euclidean metric, p, can be less
than +/3/2. This problem was considered in [66], where the Steiner ratio is studied in
the case where n = d + 1 terminals are-the vertices of a regular simplex. The conjecture
(unproved even for d = 2) that just on this configuration the Steiner ratio is attained
was stated. The Steiner ratio and the SMT of a d-dimensional regular simplex are not
known. In [66] short trees are constructed for simplexes of several dimensions d. Except
the cases d = 3,4,5, these trees are not even the Steiner trees; however,-the authors
prove a bound on p,(A) close to (1 + +/3)/4 = 0.68301 in the limit as d — co. In
[22] trees are constructed for regular simplexes to obtain a bound for min Ls(A)/La(A)
which comes arbitrarily close to (3/2)"/%(2%% — 1)~! = 0.66984 for sufficiently large d.
For dimensions d > 5 these trees are proved to be SMT.

For the RSP Hwang (75] formulated an analogue of the Gilbert-Pollak’s conjecture
in the form p, = 2/3 and proved that p, > 273 and this bound can be attained for
infinite number of n. While proving the bound, the author also gave many lemmas
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which characterized a SMT with rectilinear distance. Some similar characteristics were
investigated in [25, 26, 71]. ,

Three results concerning the mean value E(Ls(A)/Lap(A)) for the case n = 3 and
the Euclidean metric are given in [84]. For the uniformly distribution one obtains
E(Ls/Lwm) = 0.98, for the Gaussian distribution one obtains E(Ls/Las) > 0.96.

A generalization of the Gilbert-Pollak conjecture is considered in [47, 140]. Gilbert
formulated the so-called minimal Gilbert network problem (MGN) as a generalization
of the STP by adding flow dependent weights to the arcs.

“The purpose of [140] is to generalize the Gilbert-Pollak conjecture to the ratio
between the MGN and the regular network (MRN), where extra nodes are not allowed.
The authors give the proof that when the regular minimal network connects three nodes
by adding exactly one extra point, the ratio is equal to (2—+/3)/2 and that this maximal
improvement can be attained only for symmetric case, namely, where the three nodes
are the vertices of an equilateral triangle and the weights of the three arcs are equal.
Let

Pn = inf{LMGN/LMRN: |A| = n}.

Trietsch and Handler conjectured that p, = v/3/2 and proved it for n = 3. But in [47]
Du and Hwang give a counterexample to this conjecture for n = 4. In this paper a
simple geometric proof for n = 3 is given.

Let Lgr(A) be the semiperimeter of the smallest rectangle with vertical and horizontal
lines which contains A. In the case of the rectilinear metric it is easy to see that
Ls(A) > Lp(A) forn > 3, and Lr(A) can be used as a lower bound for Lg(A). Therefore
in (25, 71] the value

Th = max{Ls/LR: IAI = n}

is investigated. The values ry = 1, r4 = 3, rs = 3/2 are given in [73]. It is shown in
[25] that r, increases monotonically and tends to (y/n + 1)/2 and r¢ = 5/3, r7 = 7/4,
rg = 11/6, 9 = 2, Tio = 2.

Chung and Graham in [26] investigated the following question. What is the greatest
length s(n) of SMT for a set of n points contained in a unit square? By considering
subsets of the regular hexagonal lattice placed in a unit square, it is easy to show that
s(n) > (3/4)/%n¥/2 + O(1), and Few [26] proved that s(n) < n'/2 + 7/4. In [26] the
estimate s(n) < 0.995nY/2 was proved for sufficiently large n. For the rectilinear metric
the maximum length s(n) satisfies the inequalities n'/2 + O(1) < s(n) < n¥/2 + 1+ O(1).
In fact, s(r*) = r + 1 if n = 2, The conjecture that s(n) < n'/2 + 1 for all n was stated.

In Bern’s paper [9] the RSP is investigated. Two probabilistic results are obtained.
Given n points distributed uniformly on the unit square, the length of the shortest
spanning tree, the rectilinear ST, the travelling salesman tour, or some other functional
on these n points with probability tending to one is asymptotically equal to 8+/n for
some constant  (different for different functions) as n — co. Bern proves that the
-_constants in the cases of rectilinear spanning tree and RST are really different. The
expected value of the minimum number of Steiner points in the shortest RST grows
linearly with n and is not less than 0.039n.

Jain (89] applied a probabilistic approach to investigate the relative tightness of
linear programming relaxation bound for the integer programming for emulation of the
SPN. Under two different random models of a network he shows that the aggregate
linear programming relaxation provides a rapidly converging bound for the MST and
characterizes the rates of convergence. He constructs algorithms of solution for SPN
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on the basis of the Lagrangian relaxation and proves that with probability one these
algorithms give the length of SMT. The paper includes a number of interesting results
on the strategy of solution of the SPN.

In [15] Bertsimas considers a probabilistic version of the minimum spanning tree

problem, where the probability p; of presence of each vertex ¢ is given, and suggests an
approximate (suboptimal) algorithm for this problem.
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