VERTEX-WEIGHTED STEINER TREE PROBLEM IN GRAPHS

Oleg G. Taraszow

Institute of Computer Architecture in Central Institute of Cybernetics and Information Processes Kurstraße 33, 0-1086 Berlin

ABSTRACT

We study the general vertex-weighted Steiner tree problem in graphs which is an extension of the standard Steiner tree problem by the addition of vertex-associated weights. This article deals also with a such special case of this problem as the vertex-weighted optimal paths problem and its modifications and with the vertex-weighted generalized 1-median-problem. Polynomial algorithms are presented for the exact solution of the last problems and some heuristic algorithms for the vertex-weighted Steiner tree problem in graphs. The memory requirement is linear with respect to sizes of graphs.

1. INTRODUCTION

Let G = (V, E) be a finite, undirected graph with sets V and E of vertices and edges, respectively. The sets V and E of the graph G are denoted by V(G) and E(G), too. Let $V = Z \cup S$ and S = |V(G)|, S = |E(G)|, and S = |S|. The vertices belonging to Z are called Z-vertices and the remaining vertices are called *Steiner vertices* (or S-vertices). Cost functions φ and ψ for the vertex and edge sets are given as follows:

$$\varphi \colon V(G) \longrightarrow \mathbb{R} \tag{1}$$

$$\psi \colon E(G) \longrightarrow \mathbb{R} \tag{2}$$

For any subgraph $Q \subseteq G$ the total cost C(Q) of Q is defined in the following way

$$C(Q) := \sum_{X \in V(Q)} \varphi(X) + \sum_{Y \in E(Q)} \psi(X)$$
(3)

Formally, the Vertex-weighted Steiner Tree Problem in Graphs (VSTG - problem) can be formulated as follows.

Problem (VSTG-problem).

GIVEN: An graph G; edge and vertex cost functions (1) and (2), respectively, and a subset $Z \subseteq V(G)$.

FIND: A subgraph $Q \subseteq V(G)$ such that there is a path between every pair of Z-vertices, and the total cost (3) of Q is a minimum.

In the case $\varphi \equiv 0$ the VSTG-problem reduces to the well-known standard Steiner tree problem in graphs. The Steiner tree problem in graphs is known to be NP-complete [1] and several exact and heuristic algorithms for its solutions have been proposed. The excellent survey on the Steiner tree problems in graphs has been given by Winter [2].

The special case of the VSTG-problem, where the set of vertices, which must be included in the solution tree, consists of a single node, and all vertices weights are negative, is investigated by Segev [3]. It is shown in [3] that this special case is also NP-complete, its integer programming formulation is given and heuristic procedures are proposed. Analogous to [3] can be proved that the VSTG-problem is also NP-complete.

We examine first following special polynomial cases of the VSTG-problem:

- (a) |Z| = 2. The VSTG-problem reduces to a generalization of the well-known shortest path problem.
- (b) |Z| = n. The VSTG-problem reduces to the well-known minimal spanning tree problem.

We study then a generalization of the well-known 1-median-problem and present finally some heuristics for solving the VSTG-problem.

2. GRAPH REPRESENTATION

The algorithms proposed in this paper use a linked adjacency list representations of graphs (e.g. Taraszow and Richter [4]). This representation requires at most O(m+n) words of storage.

Fig.1 illustrates the suggested data representation for some digraph Q.

Fig. 1: Example of a digraph Q and its data representation

3. VERTEX-WEIGHTED OPTIMAL PATHS

We consider now the the special case of the VSTG-problem, where |Z| = 2 and therefore the subgraph Q is a path.

Problem (generalized one-pair problem)

GIVEN: An digraph G, the arc and vertex cost functions, and two vertices $x,y \in V(G)$.

FIND: A path $Q \subseteq G$ from the vertex $x \in V(G)$ to the vertex $y \in V(G)$ such that the total cost of Q is minimal.

In the case $\varphi\equiv 0$ we have the well-known shortest path problem. Polynomial time algorithms for this problem are known (e.g. Bellman [5], Dijkstra [6] or Dreyfus [7]).

The basic algorithms for the determination of shortest paths are algorithms for solving the following problem.

Problem (generalized one-to-all problem)

GIVEN: An digraph G, the arc and the vertex cost functions, and a vertex $x \in V(G)$.

FIND: Optimal paths in G from the vertex $x \in V(G)$ to all other vertices of G.

The our algorithm Path1(x) solving the generalized one-to-all shortest path problem is based on the Dijkstra's method [6].

Dijkstra procedure

```
begin
     u_1 \leftarrow \emptyset;
      for j \leftarrow 2 until n do
          if (1,i) \in E(G) then u_i \leftarrow c_{1i};
          else u_i \leftarrow \infty;
          fi;
     od;
      S \leftarrow \{2,3,\ldots,n\};
      while S ≠ Ø do
          find k \in S such that u_k = \min_{j \in S} \{u_j\};
          if u_k = \infty then STOP;
           [comment: no paths to the vertices remaining in S]
          else
               begin
                    S \leftarrow S \setminus \{k\};
                   for each j \in S do
                              \leftarrow \min_{\substack{\{u_j,u_k+c_{kj}\};\\(k,j)\in E(G)}}
                   od;
              end;
          fi;
      od;
end;
           I_n := \{1, 2, ..., n\}; V(G) = I_n;
where
             c_{ij} \coloneqq \psi(i,j) \quad (i,j \in \mathbb{I}_n)
             u_{i} := length of optimal path from the vertex <math>l \in I_{n} to the
                      vertex j \in I_n.
```

The algorithm Path1(x) is a new modification of the *Dijkstra* procedure and uses a linked adjacency list representation, and the idea of the stack principle (e.g. *Yen* [8]) with the labeling finally processed vertices (e.g. *Dreyfus* [7]).

The algorithm Path1(x) has been modified for solving following optimization problems in digraphs:

- determination of an optimal path from a vertex x ∈ V(G) to a vertex y ∈ V(G) in a arc and vertex weighted digraph G [Algorithm Path2(x,y)]
- determination of an optimal path from a vertex $x \in V(G)$ to a vertex subset $Y \subseteq V(G)$ in a arc and vertex weighted digraph G [Algorithm Path3(x,Y)]
- determination of an optimal path from a vertex subset $X \subseteq V(G)$ to a vertex subset $Y \subseteq V(G)$ in a arc and vertex weighted digraph G

[Algorithm Path4(X,Y)]

The algorithms Path1(x) - Path4(X,Y) are described in details by Taraszow [9], and Taraszow and Richter [4]. Fig. 2 - 5 present some computational results of these algorithms for a graph delivered by the random graph generator described by Richter and Taraszow [10]. For this graph n = 360 and m = 597. The vertex and the edge costs are uniformly distributed in the segments [0,200] and [0,10], respectively.

4. VERTEX-WEIGHTED GENERALIZED 1-MEDIAN PROBLEM

The median of a graph is any vertex in the graph that minimizes the sum of the shortest distances from it to all another vertices. We investigate now a vertex-weighted generalized 1-median problem. Let $X \subseteq V(G)$ be the set of admissible median placements and $Y \subseteq V(G)$ the set of all vertices to be connected with the median vertex. In addition to vertex and edge costs (1) and (2), respectively, there is also a cost function χ for admissible median placements:

$$\chi: V(G) \longrightarrow \mathbb{R}$$
 (4)

We denote by S(x,Y) a star consisting of optimal paths from its center $x \in X$ to all vertices $y \in Y$ and by J(S(x,Y)) its cost, respectively, i.e.

$$J(S(x,Y)) := \chi(x) + \sum_{y \in Y} C(P_n(x,y))$$
(5)

where $P_G(x,y)$ is an optimal path between vertices x and y, and $C(P_G(x,y))$ is the cost of this path determined by (3).

Problem (vertex-weighted generalization 1-median problem)

GIVEN: A graph G; vertex and edge costs; median placement cost; subsets X≤V(G) of admissible median placements and Y≤V(G) of terminal vertices.

FIND: A star $S(x_*,Y)$ with $x_* \in X$ such that the total cost of $S(x_*,Y)$ is minimal.

The standard 1-median problem is identical to the case of X = Y = V(G) and $\varphi \equiv \chi \equiv 0$. For results regarding the p-median problem see e.g. Christofides [11].

The algorithm Star(X,Y) solving the problem above is presented in Pidgin Algol as follows (in detail see Taraszow [9]): Algorithm Star(X,Y)

begin

```
[comment: X,Y \subseteq V(G)]

C \leftarrow \infty;

for each x \in X do

Call \ Path3(x,Y);

C1 \leftarrow J(S(x,Y));

if C1 < C then

C \leftarrow C1;

S \leftarrow S(x,Y);

fi;

od;
```

The computational complexity of the algorithm Star(X,Y) is $O(pn^2)$ in the worst case, where p = |X|.

A computational example for solving of the vertex-weighted generalized 1-median problem is given in Fig.6.

5. VERTEX-WEIGHTED STEINER-PROBLEM IN GRAPHS

We consider now the common case of the VSTG-problem, formulated in the section 1. To solve the VSTG-problem we propose a common greedy scheme that can be mainly characterized by a stepwise extension of a tree and consists of three steps, namely (a) initialization, (b) extension, and (c) termination. Make use of this scheme we can obtain some greedy heuristics solving the VSTG-problem.

Common greedy scheme

```
Initialization: Fixing some subtree T_0 \subseteq G. T \leftarrow T \; ; \; R \leftarrow S \setminus V(T). Extension: Find a vertex x \in R such that C(P_G(x,T)) = \min C(P_G(y,T)). y \in R T \leftarrow T \cup P_G(x,T); \; R \leftarrow R \setminus V(P_G(x,T)). Termination: If R = \emptyset then end.
```

Different heuristics for solving of the vertex-weighted Steiner problem in graphs can be obtained from this common greedy scheme by the choice of different start subtrees \mathbf{T}_0 or different extensions of subtrees. Usual situations correspond to choice such start subtrees as a Z-vertex, the shortest path between two Z-vertices or between two arbitrary vertices, the longest path between two Z-vertices etc. and to choice such extensions as the shortest or the longest path between the vertices of the current Steiner tree and the remaining Z-vertices. Some of these algorithms are described in details by Taraszow [9]. The computational complexity of these algorithms is $O(\mathrm{kn}^2)$ in the worst case. Two illustrative examples for these heuristics are given in Fig.7 ($T_0 = x \in Z$) and Fig.9 ($T_0 = P_G(x,y)$ where $x,y \in Z$).

REFERENCES

- [1] R.M.Garey and D.S.Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H.Freeman and Company, San Francisco (1979).
- [2] A. Segev. The node-weighted Steiner tree problem. Networks 17 (1987) 1-17.
- [3] P.Winter. Steiner problem in networks: a Survey. Networks 17 (1987) 129-167.
- [4] O.Taraszow and P.Richter. Efficient algorithms for the determination of optimal paths in non-negatively weighted digraphs. In: A.Iwainsky (Eds.) Optimization of Connection Structures in Graphs. CICIP, Berlin (1985) 13-28.
- [5] R.E.Bellman. On a routing problem. Q.Appl.Math. 16(1958) 87-90.
- [6] E.W.Dijkstra. A note on two problems in connection with graphs. Numer.Math. 1(1959) 269-271.
- [7] S.E.Dreyfus. An appraisal of some shortest-path algorithms. Oper.Res. 17(1967) 3, 395-412.
- [8] J.X.Yen. Shortest Path Networks Problems. (Mathematical Systems in Economics 18) Verlag Anton Hain, Meisenheim am Glan (1975).
- [9] O.Taraszow. Entwicklung graphentheoretischer Methoden zur Untersuchung von Systemstrukturen. Diss. B, Berlin (1985).
- [10] P.Richter and O.Taraszow. Random graph generation. In: A.Iwainsky (Eds.) Optimization of Connection Structures in Graphs. CICIP, Berlin (1985) 213-225.
- [11] N.Christofides. Graph Theory: An Algorithmical Approach.
 Acad. Press, New York (1975).

Fig. 4: Optimal path between a vertex (x) and a subset X = V(G) (o) [Algorithm Path3(x,X)]

[Algorithm Path4(X,Y)]

Fig. 6: Optimal placement of a star structure
[Algorithm Star(Y,X)]

Fig. 6: Optimal placement of a star structure
 [Algorithm Star(Y,X)]

Fig.7: Steiner tree [Algorithm STree1(x)]

Fig. 8: Steiner tree [Algorithm STree2(x,y)]