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‘ ABSTRACT

We study the general vertex-weighted Steiner tree problem
in graphs which is an extension of the standard Steiner tree
problem by the addition of vertex-associated weights. This
article deals also with a such special case of this problem
as the vertex-weighted optimal paths problem and its
modifications and with the vertex-weighted generalized 1-
median-problem. Polynomial algorithms are presented for the’
exact solution of the 1last problems and some heuristic
algorithms for the vertex-weighted Steiner tree problem in
graphs. The memory requirement is linear with respect to
sizes of graphs.

1 INTRODUCTION

Let G = (V,E) be a finite, undirected graph with sets V and E
of vertices and edges, respectively. The sets V and E of the
graph G are denoted by V(G) and E(G), too. Let V=2 U S and n:=
=|V(G)|, m:=]|E(G)|, and k:=|S|. The vertices belonging to Z are
called Z-vertices and the remaining vertices are called Steiner
vertices (or S-vertices). Cost functions ¢ and ¥ for the vertex
and edge sets are given as follows:

o: V(G) = R (1)

w: E(G) = R ‘ : (2)

For any subgraph Q € G the total cost C(Q) of Q is defined in
the following way

C(Q) := ) o(x) + ) w(x) (3)
x<V(Q)  reE(Q)




Formally, the Vertex-weighted Steiner Tree Problem in Graphs

(VSTG - problem) can be formulated as follows.

Problem (VSTG-problem). |

GIVEN: An graph G; edge and vertex cost functions (1) and (2),
respectively, and a subset Z = V(G).

FIND: A subgraph Q € V(G) such that there is a path between
every pair of Z-vertices, and the total cost (3) of Q is
a minimum.

In the case ¢ = 0 the VSTG-problem reduces to the well-known
standard Steiner tree problem in graphs. The Steiner tree problem
in graphs is known to be NP-complete [1] and several exact and
heuristic algorithms for its solutions have been proposed. The
excellent survey on the Steiner tree problems in graphs has been
given by Winter [2].

The special case of the VSTG-problem, where the set of
vertices, which must be included in the solution tree, consists
of a single node, and all vertices weights are negative, is
investigated by Segev [3]. It is shown in [3] that this special
case is also NP-complete, its integer programming formulation is
given and heuristic procedures are proposed. Analogous to [3] can
be proved that the VSTG-problem is also NP-complete.

We examine first following special polynomial cases of the
VSTG-problem:

(a) |2] = 2. The VSTG-problem reduces to a generalization of the
well-known shortest path problem.

(b) |Z2] = n. The VSTG-problem reduces to the well-known minimal
spanning tree problem.

We study then a generalization of the well-known 1-median-
problem and present finally some heuristics for solving the VSTG-
problem.

2. GRAPH REPRESENTATION

The algorithms proposed in this paper use a 1linked adjacency
list representations of graphs (e.g.Taraszow and Richter ([4]).
This representation requires at most O(m+n) words of storage.

Fig.l illustrates the suggested data representation for some
digraph Q.
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Fig. 1: Example of a digraph Q and its data representation

3. VERTEX—-WEIGHTED OPTIMAL PATHS

We consider now the the special case of the VSTG-problem,
where |Z| = 2 and therefore the subgraph Q is a path.
Problem (generalized one-pair problem) '
GIVEN: An digraph G, the arc and vertex cost functions,and two
vertices x,y € V(G).
FIND: A path Q £ G from the vertex xeV(G) to the vertex yeV(G)
such that the total cost of Q is minimal.
In the case ¢ = 0 we have the well-known shortest path
problem. Polynomial time algorithms for this problem are known
(e.g. Bellman (5], Dijkstra [6] or Dreyfus [7]).

The basic algorithms for the determination of shortest paths
are algorithms for solving the following problem.




Problem (generalized one-to-all problem)

GIVEN: An digraph G, the arc and the vertex cost functions, and a
vertex x  V(G).

FIND: Optimal paths in G from the vertex x « V(G) to all other
vertices of G.
The our algorithm Pathl(x) solving the generalized one-to-all
shortest path problem is based on the Dijkstra's method [6].

Dijkstra procedure

begin
u1 — I;
for j e 2 until n do
if (1,i) € E(G) then uj «— C

else uj L H

157

fi;

od;

8 = {2,%, . eeli)s

while S = @ do
find k « S such that W = még {uj};
if U = ® then STOP; ;

[comment: no paths to the vertices remaining in S]

else
begin
S «— S \ {k};
for each j € S do
u:.l — - min {uj.,uk + ckj};
od; (k,3) < E(G)
end;
fi;
od;
end;
where ﬂn t= {1,2,4¢+,0); V[B) = un;
cij:= w(i,j) (i,] e un)

u

i := length of optimal path from the vertex le unto the
vertex j un'

The algorithm Pathl(x) is a new modification of the Dijkstra
procedure and uses a linked adjacency 1list representation, and
the idea of the stack principle (e.g. Yen [8]) with the 1labeling
finally processed vertices (e.g. Dreyfus [7]).

The algorithm Pathl(x) has been modified for solving following
optimization problems in digraphs:




- determination of an optimal path from a vertex x « V(G) to a
vertex y € V(G) in a arc and vertex weighted digraph G
[Algorithm Path2(x,y)]

- determination of an optimal path from a vertex x € V(G) to a
vertex subset Y € V(G) in a arc and vertex weighted digraph G
[Algorithm Path3(x,Y)]

- determination of an optimal path from a vertex subset X = V(G)
to a vertex subset Y& V(G) in a arc and vertex weighted
digraph G
[Algorithm Path4(X,Y)]

The algorithms Pathl(x) - Path4(X,Y) are described in details
by Taraszow [9], and Taraszow and Richter [4]. Fig. 2 - 5 present
some computational results of these algorithms for a graph
delivered by the random graph generator described by Richter and
Taraszow [10]. For this graph n = 360 and m = 597. The vertex and
the edge costs are uniformly distributed in the segments [0,200]
and [0,10], respectively.

4. VERTEX—WEIGHTED GENERALIZED 1-MEDIAN PROBLEM

The median of a graph is any vertex in the graph that
minimizes the sum of the shortest distances from it to all
another vertices. We investigate now a  vertex-weighted
generalized l-median problem. Let X & V(G) be the set of
admissible median placements and Y € V(G) the set of all vertices
to be connected with the median vertex. In addition to vertex and
edge costs (1) and (2),respectively, there 1is also -a cost
function » for admissible median placements:

¥ ¢ V(G) =t R (4)

We denote by S(xX,Y) a star consisting of optimal paths from
its center x € X to all vertices y € Y and by J(S(x,Y)) its cost,
respectively, i.e.

I(S(x,Y)) i= x(x) + ) C(B(x,¥)) (5)

: yeY
where PG(x,y) is an optimal path between vertices x and y, and
C(PG(x,y)) is the cost of this path determined by (3).

Problem (vertex-weighted generalization l1-median problem)

GIVEN: A graph G; vertex and edge costs; median placement cost;
subsets X<V(G) of admissible median placements and Y&V(G)
of terminal vertices.




FIND: A star S(x,,Y) with x, € X such that the total cost of
S(x,,Y) is minimal.
The standard 1-median problem is identical to the case of X =
Y =V(G) and ¢ = x = 0. For results regarding the p-median
problem see e.g. Christofides [11].
The algorithm Star(X,Y) solving the problem above is presented
in Pidgin Algol as follows (in detail see Taraszow [9]):
Algorithm Star(X,Y)
begin
[comment: X,Y € V(G)]
C e w;
for each x « X do
Call Path3(x,Y);
Cl & J(S(x,Y));
if C1 < C then
C « C1;
S &« S(x,Y);
fi;
od;
end
The computational complexity of the algorithm Star(X,Y) is
O(pnz) in the worst case, where p = |X].
A computational example for solving of the vertex-weighted
generalized l1-median problem is given in Fig.6.

5. VERTEX—WEIGHTED STEINER—PROBLEM IN GRAFHS

We consider now the common case of the VSTG-problem,
formulated in the section 1. To solve the VSTG-problem we propose
a common greedy scheme that cén be mainly characterized by a
stepwise extension of a tree and consists of three steps, namely
(a) initialization, (b) extension, and (c) termination. Make use
of this scheme we can obtain some greedy heuristics solving the
VSTG-problem.

Common greedy scheme
Initialization: Fixing some subtree T, = G.
T g T 3 Rt B X VD)

Extension: Find a vertex x € R such that
C(PG(x,T)) = min C(PG(y,T)).
y<R
T T UPy(x,T); R =R\ V(Pé(x,T)).
Termination: If R = @ then end.




Different heuristics for solving of the vertex-weighted
Steiner problem in graphs can be obtained from this common greedy
scheme by the choice of different start subtrees T, OF different
extensions of subtrees. Usual situations correspond to choice
such start subtrees as a Z-vertex, the shortest path between two
Z-vertices or between two arbitrary vertices, the 1longest path
between two Z-vertices etc. and to choice such extensions as the
shortest or the longest path between the vertices of the current
Steiner tree and the remaining Z-vertices. Some of these
algorithms are described in details by Taraszow [9]. The
computational complexity of these algorithms is 0(kn2) in the
worst case. Two illustrative examples for these heuristics are

given in Fig.7 (T0= X € Z) and Fig.9 (TO= PG(x,y) where X,y  2).
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Fig. 6: Optiﬁal_placement of a star structure
[Algorithm Star(Y,X)]
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Fig. 6: Optimal placement of a star structure

[Algorithm Star(Y,X)]
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