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ENUMERATION OF ACYCLIC SUFERTOURNAMENTS
OF A FINITE, LABELED, ACYCLIC DIGRAPH

Qleg G. Taraszow
Central Institute of Cybernetics
and Information Processes,
Academy of Science of the GDR,
KurstraBe 33, 1086 Berlin, GDR

Let G be a finite, labeled, acyclic digraph. In this
paper we consider a tournament, a complete oriented graph. A
tournament of whiech a given digraph is a spanning subgraph
is called a supertournament of this digraph.

The purpose here is to give a summary of the main re-
sults in solving the following problem 1 and some eguivalent
problems 24 (For the detailed proofs of this results see
/).

Problem 1. Calculation of the number t(G) of all different
acyclic supertournaments of a finite, labeled,
acyclic digraph G,

Let V(G) and E(G) be the sets of vertices and arcs of a
digraph G, respectively. Let G be the transitive closure and
G the basis digraph of the digraph G, respectively. The num-
ber of elements of a set X we denote by |X]|.

Lemma 1. (G,=0,)V(G;=G,) ==1(G;) = t(G,).

Let re E(G). We write G-r and G/F¥, respectively, for a
digraph resulting from the digraph G by canceling the arc r
and by changing the orientation of r, respectively.

Lemma 2, VreE(G): t(G-r) = t(G) + t(G/T).

Let odG(x) and idG(x) be the outdegree and the indegree
of the vertex xeV(G), respectively. We call L a circuit of
an acyclic digraph G (L<G). The vertices be V(L) and eeV(L), |
respectively, are the initial and the terminal vertices of L ‘
if idL(b)=O and odL(e)zo, respectively.

By changing the orientation of a special subset of the
arcs of I the circuit L can be transformed into a cycle. The
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arcs of this subset are called arcs of negative orientation.
The remaining arcs of L are called positive oriented. Now we
label the arcs of L as follows (ef. fig.1). Starting with
any terminal vertex ee V(L) and then countinuing with the ne-
gative orlentation we label with 1,2,...,m all positive ori-
ented arcs. Analogously, starting with e e V(L) and then fol-
lowing the positive orientation we label with ~-1,-2,...,n
all negative oriented arcs.
Here m and n are the numbers
of the positive and negative
oriented arcs of L,respecti-
vely.

Let L be the circuit
resulting from I by changing
the orientation of |[i] arcs
of I, 1labeled 1,2,...,i 1f 1> 0
and -1,-2,...,1 if 1i<0,
Whereas Li is the digraph
originating from L? by canceling the arc with the label i.
The digraph G/Li results from G the exchange of L for Lj.

Fig.1. Circuit L.

Theorem 1, (Method of canceling a circuit)
m s
VIisG:  t(G) =i'2. Z (—’1)1+1t(G/Li).
iz-n
Theorem 2., For any finite, labeled, acyclic digraph
G the problem of the calculation of t(G)
can be reduced to the case of finite,
labeled, oriented, rooted trees using
the method of canceling circuits.

Let T denote a finite, labeled, oriented, rooted tree.
VxeV(T) let Tx be the maximal subtree with the root x in T.

Theorem 3 t(T) = |V(T)] !/ [v(ry,)

xeV(T)

Let T, . denote a regular, oriented tree of degree n
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with height m.

Corollarsy.

' i
t( n m) = (n_,]) n -1 / m-i+1 _1)11

Let T/G/ denote an oriented, rooted, spanning tree of
a weakly connected digraph G. Let I & {1,2,...,n}.

Theorem 4, Let G a finite, labeled, acyclic
digraph.

= }_LGi, Gj- weakly connected component of G)A

AL €T (I 17657 | Gy = T/6i/)) —>

= t(G) = |V(@)|!

i=1 XGV(G )

Two families of upper bounds,

Lemma 3. (G&GTG®A(V(G) =V(G) = V(™)) =

= +t(G¥) <t(G) < t(Gx) .

Theorem 5. Let Gbe a finite, labeled, acyclic,
weakly connected digraph with exactly
one initial vertex, Then

vV T/G/:  t(G) <|V(G)|! / | |V (T, /6/)] .
xeV(G)
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Theorem 6, Let G be a finite, labeled, acyclic
digraph,

k
G = i]__llai)/\ (VT84 Je1 ) ==

k

= t(G) < |V(&)|! / ﬂ Iv(1,./657)] .
i=1 er(Gi)

We denote:

{XeV(G) (vx,ye X)(((x,¥) ¢ E(G)IAN((¥,x) ¢ E(G)))},

m X/
xeﬁh)ll

Theorem 7. Let G be a finite, labeled, acyclic,
weakly connected digraph with exactly
one initial vertex be V(G). Then for
an arbitrary minimal Dilworth’s
decomposition of G, i.e.

a(G)
v(G) = V(C3), Vi £ J: V(CNV(Cy) =@,
i=
where the C; are paths in G, we have

1Y

N(G)

[I'4

(@)

a(G)
t(6) < avig)l - H |V(Gi)| 1
ifp
Now we present three problems equivalent to problem 1,
Problem 2. Calculation of the number t(G) of all different
topological sortings (/2/,p.365) or admissable
labelings (/3/,p.49) of the vertices of a finite,
labeled, acyclic digraph G, i.e.

£(6) = [{£: I— V(&) (((£(1),£(3§)) € E(G)) =>(i< 3},
where n = |V(G)]|.

323



Problem 3. Calculation of the number t(R) of all different,
admissible permutations of the partially ordered
set In, i.e.

%(R) = [{£: Iz~I,|£(i)BE(§)=>(i <j)}|, where
REI ¥, RE = #, RR "= §,R°<R, B £ {(1,1)[1eI].
/47 yPP. 39403 /5/;/6/)-

Problem 4, Calculation of the order dimension t(R) of a
partial order R XXX, i.e.

t(R) = |[{Le¥xxX Re=L}|, where LME =@, _
L= g, 12<L, WL™"= X2\E, E 2 {(x,x)|xc X} (/7/5/8/,p.235).
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