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Abstract—Underwater videography enables marine researchers
to collect enormous amounts of seagrass image data. This
collection is fast and cheap but the manual analysis of such
data is slow and expensive. Therefore, we propose a machine-
learning approach for the automatic seagrass coverage estima-
tion of the sea bottom. Our contribution is the investigation of
CNN features to describe patches and superpixels of seagrass.
CNN features are the activations of a specific layer in a deep
convolutional neural network. We also provide the first public
available dataset of seagrass images that can be used as a
benchmark for automatic seagrass segmentation. Our best
method achieves an accuracy of 94.5% for seagrass segmenta-
tion on the provided dataset. Our code and dataset is available
on GitHub: https://enviewfulda.github.io/LookingForSeagrass/

1. Introduction

Seagrass meadows have a major impact on the coastal
environment. They provide carbon within both the grazing
and detrital food webs, improve water quality, stabilize the
shoreline, and offer living surface and habitat for juvenile
and adult fish and invertebrates. Therefore most countries
with ocean territory have mandated seagrass monitoring
programs as a component of overall management of the
ocean environment. Since the quantification of seagrass
meadows in situ by human divers is labor intensive, we
use underwater images to quantify seagrass coverage of the
sea bottom at the Adriatic sea in Croatia. In that way we
can collect a huge number of seagrass images with the
corresponding GPS location. All images are taken by an
autonomous underwater vehicle (AUV). AUVs are a time-
and cost efficient way for seagrass monitoring as shown in
[1], but our results also apply to other means of obtaining
images, such as with ROVs, towed cameras, or divers. In
a post processing step all images need to be analyzed by a
human to estimate the fraction of seagrass in the image. This
process is slow and error-prone. In order to overcome these
problems, automatic methods for visual seagrass coverage
estimation are proposed in literature.
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Figure 1. Prediction procedure using superpixels: From an input image
superpixels are extracted. From these superpixels we calculate rectangular
patches of equal size and extract their features. Using the features, a
classifier predicts each patch. Afterwards the predictions are matched with
the previously calculated superpixel in order to obtain a pixel-accurate
prediction.

2. Related Work

Massot-Campos et al. [2] divide the image in small
patches and classify each patch as seagrass or background.
They test different classifiers and describe the image patches
with texture based features. The papers [3], [4] and [5]
follow also a patch classification approach to segment the
image as proposed in [2]. Bonin-Font et al. [4] use also
a pixel refinement method as post processing step to get
better than with pure patch based classification. In contrast
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to that we try a superpixel based [6] classification approach.
Gonzalez-Cid et al. [5] utilize a convolutional neural net-
work (CNN) trained on seagrass images and compare it
with a support vector machine (SVM) trained with texture
features. Their CNN also performs the classification process
using a classification layer. As opposed to this work we are
using a specific layer of a CNN to extract features. With
these features we train a seagrass classifier.

3. Dataset

Recording The dataset consists of 12682 images
recorded with an AUV along the coast of the island of
Murter, Croatia by a team of marine biologist. The diving
device is equipped with a pressure and sonar sensor to
measure the distance to the water surface as well as the
distance to the bottom of the sea. An integrated control
system ensures that the device slide over the sea bottom
at a distance of 2m (tolerance ±0.5m) During the image
capturing the AUV is moving with approximately 1m/s
along the sea bottom. Figure 2 illustrates a layout of the
diving operation. A waterproof GoPro Hero 2 Action Cam
was used for the image capturing. The frame rate was set
to 1 frame per second, which leads to approximately one
image per covered meter. All images have a resolution of
1920 x 1080 pixels.

Figure 2. Schematic illustration of the image capturing process using an
AUV

Annotation Each image has been annotated with poly-
gons indicating if a pixel belongs to the class seagrass
or background. These polygons have been transformed to
black/white pixelmaps where black means seagrass and
white signifies background. The annotation work was done
by two learned human annotators, trained by an expert in
marine biology. One annotator was able to annotate approx-
imately 400 images per day. In whole we needed two weeks
to annotate all seagrass images.

The annotated dataset consists of 6037 annotated images
that have been taken in different distances to the ground,

since the AUV is diving up and down between different
transects. The annotators stated, that it was hard for them to
annotate images when they became blurry. This has already
been the case for distances of more than 4 meters. If the
distance is more than 6 meters, images become out of
focus, and for this reason, we did not annotate them. The
images show a combination of seagrass, algae, sediment
background and occasional fish and invertebrates. Table 1
shows the distribution of the images over the different depths
in relation to the sea bottom. Our public available dataset
can be downloaded at:
https://enviewfulda.github.io/LookingForSeagrass/

TABLE 1. IMAGES: DISTRIBUTION BY DEPTH IN RELATION TO THE SEA
BOTTOM

depth d # images

0 >= d < 1m 89
1 >= d < 2m 2522
2 >= d < 3m 2273
3 >= d < 4m 471
4 >= d < 5m 332
5 >= d < 6m 349
6 >= d < 31m 6645 (not annotated)

4. Method

We propose a superpixel classification approach to tackle
the problem of underwater seagrass coverage estimation in
images.

Figure 1 demonstrates the main idea of our method:
(1.) Given an input image, (2.) we use a superpixel method
to extract segments that adjust smoothly to the boundaries
between seagrass and background. As superpixel methods
we test Simple Linear Iterative Clustering (SLIC) [6] and
Compact Watershed (CW) [7] algorithm. (3.) Each su-
perpixel is transformed into a rectangular patch. (4.) The
transformed patches are feed into a feature extractor. (5.) A
logistic regression classifier classifies each patch either into
the class seagrass or background. (6.) The predicted patches
are matched with the previous determined superpixels in
order to obtain a contour-accurate prediction.

4.1. Superpixel

Superpixel algorithms search for homogeneous regions
in the image, while such a region is called a Superpixel.
Our main idea was to have smoothly adapted boundaries
between seagrass and background regions. As superpixel
methods we test Simple Linear Iterative Clustering (SLIC)
[6] and Compact Watershed (CW) [7] algorithm. We choose
these algorithms in order to obtain regular and similar sized
superpixels. However, it cannot be guaranteed that each
superpixel contains the same number of pixels. Since the
classifier needs to be fed with equal sized feature vectors,
we convert each superpixel into a rectangular patch of the
same size. To get back to a pixel accurate prediction, the



classified rectangular patches are mapped to the correspond-
ing superpixels.

4.2. Feature Extraction

In our experiments we test three different types of fea-
tures to describe the image patches: histograms of oriented
gradients (HOG) [8], local binary patterns (LBP) [9] and
convolutional neural networks (CNN) [10].

Histogram of Oriented Gradients (HOG) The his-
togram of oriented gradients algorithm by [8] offers a good
representation of texture features. Especially for seagrass
images the texture representation is important, since the
long seagrass leafs are a good marker to distinguish it
from algae, snails and the sea bottom. The HOG method
of Dalal et al. is based on the assumption that the local
appearance or shape of an object is quite well represented
by the distribution of the local intensities or edge directions
which can be characterized without having any knowledge
about the positions of the corresponding gradients or edges.
We use the standard implementation of the HOG algorithm
which is part of the OpenCV library [11].

Local Binary Patterns (LBP) As well as HOG, the
use of local binary patterns [9] is a versatile method for
extraction of texture features in images. Particularly the sim-
ple calculation and the invariance to monotonous brightness
changes are typical characteristics of this method. We use
the standard implementation of the LBP algorithm which is
part of the scikit-image library [12].

Convolutional Neural Networks (CNN) As third repre-
sentation to describe seagrass images we use CNN features.
These features can be obtained from a pretrained convo-
lutional neural networks when feeding an image into the
network. For feature extraction the neural activations of a
specific layer in a convolutional neural network are utilized.
As described by Donahue et al. [10] a network can also be
used for feature extraction if it was trained for another task,
since the network learns a general feature representations
from the dataset it was trained on. In our case we utilize
a network that was trained on ImageNet [13]. ImageNet is
a dataset consisting of 1000 different categories like dog
breeds, balloon or taxi. As network architecture we use
InceptionNetV3 [14]. The features are extracted from Layer
pool 3, which is known to be rich of semantics.

4.3. Training

The training procedure is visualized in Figure 3: (1.)
From our training dataset described in Section 3 we use
the polygon annotated images (pixelmaps) and (2.) split the
original image into rectangular patches. Each patch belongs
either to class seagrass or background. (3.) Using these
patches we extract features with the respective extraction
method (Section 4.2). (4.) As last step we train a logistic
regression classifier using these features.

seagrass

background

Feature Extractor
(HOG/LBP/CNN)Classifier

1. Polygon annotated 
input image
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Figure 3. Training procedure: Features are extracted from certain patches
in order to train a logistic regression classifier.

4.4. Rectangular Patches

As a second method we propose a patch classification
approach as described by Massot-Campos et al. [2] and
subsequent papers [3], [4], [5]. During the first step of
this approach the input image is divided into rectangular
patches. Afterwards features for each patch are extracted. In
our project we use the presented features from Section 4.2.
Then each patch is classified as seagrass or background by
a machine-learning classifier. As presented in Section 4 we
use a logistic regression classifier. The result image contains
patchwise predictions about the seagrass and background
classes. In the following we will refer to this approach as
RP, since rectangular patches are generated. Our contribu-
tion here is the application of CNN features to describe these
image patches.

5. Experiments

5.1. Implementation Details

The implementation of our experiments is based on
Python using the TensorFlow (CNN), OpenCV (HOG),
scikit-image (LBP) and scikit-learn [15] (logistic regres-
sion classifier) libraries. We used the following hardware
setup for our experiments: Intel Xeon CPU E5-2620 v3
2.4Ghz, 32GB of RAM and a Geforce TitanX 12GB. Note
that the GPU was only used for CNN feature extraction.
Other feature extraction methods as well as the training
and prediction of the classifier were computed by the CPU.
The code for our experiments is available on GitHub:
https://enviewfulda.github.io/LookingForSeagrass/

5.2. Evaluation Protocol

Dataset We utilize 70% of the polygon annotated images
for training, 20% for testing and 10% for validation. The



train- , test- and validation sets are equally distributed among
the different depth classes of the dataset.

Metrics Shelhamer et al. [16] presented four different
metrics adapted to semantic segmentation. They use the
pixel accuracy and intersection over union (IU) metrics to
evaluate their semantic segmentation algorithms. Everigham
et al. [17] are convinced that pixel accuracy is not suffi-
ciently meaningful since this evaluation will end up in a
perfect score in the case of assigning the same label to all
pixels. However, we do disclose the results of this evaluation
method for comparative purposes. With that in mind we
decided to utilize the following metrics of Shelhamer et al.
[16].
Mean intersection over union (mean IU):

mean IU = 1
ncl

∑
i

nii

ti+
∑

j nji−nii

Frequency weighted intersection over union (f.w. IU):

f.w. IU = 1∑
k tk

∑
i

tinii

ti+
∑

j nji−nii

Pixel accuracy (pixel acc.):

pixel acc. =
∑

i nii∑
i ti

Mean accuracy (mean acc.):

mean acc. = 1
ncl

∑
i
nii

ti

With ncl as the number of different classes, nij as the num-
ber of pixels of class i predicted to belong to class j. So nii

is the number of correct predicted pixels. And ti =
∑

j nij

as the total/ true number of pixels belonging to class i.

5.3. Results

Experiment I: Feature comparison The aim of the first
experiment is to find out which features are most suitable.
The three different feature methods (HOG, LBP, CNN) from
Section 4.2 are tested using superpixel patches generated
with SLIC, CW (Section 4.1) or rectangular patches RP
(Section 4.4). For this experiment all annotated images of
the dataset have been utilized.

Table 2 shows the results of Experiment I where different
combinations of patch generation and features are tested
for a fixed patchsize. It can be observed that CNN features
work best for all patch generation methods and LBP features
are better than HOG features. For patch generation regular
patches and SLIC superpixels do an equally well job for
a patchsize of 240 × 240, while compact watershed (CW)
performs worst. This is astonishing since SLIC is able to
generate much smoother boundaries between seagrass and
background than RP from a human point of view. Please see
Figure 4 for a qualitative comparison of the different patch
generation methods.

TABLE 2. RESULTS FOR EXPERIMENT I: PATCHSIZE 240 X 240 PIXEL

method mean
IU

f.w.
IU

pixel
acc.

mean
acc.

HOG-RP 62.76 67.75 72.86 73.22
CNN-RP 80.96 89.23 93.21 85.72
LBP-RP 73.05 80.42 85.01 80.69

HOG-SLIC 63.26 69.46 74.32 72.33
CNN-SLIC 80.55 89.30 93.40 84.93
LBP-SLIC 72.46 80.43 84.95 79.20

HOG-CW 62.58 68.77 73.59 71.48
CNN-CW 75.27 84.71 89.28 79.92
LBP-CW 68.63 76.91 81.56 74.80

a)

b)

c)

Figure 4. Examples for good and bad predictions for different patch
generation methods. On the left side you can see good examples and on the
right bad predictions. In the first row a) SLIC is used for patch generation.
The second row b) shows rectangular patches and row c) presents patches
generated with compact watershed (CW). For all predictions CNN features
have been used. This Figure is best viewed in color. The light green regions
indicate seagrass predictions.

Experiment II: The distance to the sea bottom The
goal of this experiment was see to how well the proposed
methods adjust to images that have been taken from different
distances to the sea bottom; images in a larger distance to
the ground are less focused than near ones.

For this experiment we took the best methods of Ex-
periment I and performed them with a fixed patch size
of 240 × 240. Table 3 presents the results for SLIC and
RP patch generation in combination with CNN features.
We compare the segmentation performance when using all
annotated images of the dataset in a distance from 0 to 6
meters to the sea bottom and in a distance range from 0 to
2 meters. As expected, the performance for closer images is
better and CNN-SLIC and CNN-RP do a similar good job.
But it can also be observed that the performance is only



around one percentage point better. This seems not to be
significant since the error of the human annotators should
be higher than one percent for this dataset. Thus, our method
adjusts well to images taken from different distances to the
sea bottom on our dataset.

TABLE 3. EXPERIMENT II: INFLUENCE OF DIFFERENT DISTANCES TO
THE GROUND. PATCHSIZE 240 X 240 PIXEL

method mean
IU

f.w.
IU

pixel
acc.

mean
acc.

CNN-RP (0-6m) 80.96 89.23 93.21 85.72
CNN-SLIC (0-6m) 80.55 89.30 93.40 84.93

CNN-RP (0-2m) 81.88 90.83 94.35 86.25
CNN-SLIC (0-2m) 80.93 90.42 94.14 85.24

Experiment III: Patchsize comparison This third ex-
periment investigates the influence of different patchsizes
on the segmentation accuracy and processing speed. Since
we found out in Experiment I that SLIC superpixel and
rectangular patches (RP) work much better than compact
watershed (CW) as patch generation method, we only use
SLIC and RP for this experiment. We also saw in Experi-
ment I that CNN features perform best to describe seagrass
images, so we just use CNN features for Experiment III.
Since we found in Experiment II that the distance to the
ground has no significant influence on the accuracy, we only
use images that have been taken in a distance between 0 and
2 meters from the bottom for this experiment.

In Table 4 we see CNN-RP and CNN-SLIC performance
for patchsizes of 240 × 240, 180 × 180 and 120 × 120.
CNN-RP performs always better than CNN-SLIC among
all patchsizes. The segmentation performance seems to get
a bit better for smaller patchsizes, but processing time per
image doubles with each tested smaller patchsize.

In conclusion, the chosen patchsize has a huge impact on
processing time but a small on the segmentation accuracy.

TABLE 4. RESULTS FOR EXPERIMENT III. COMPARISON OF DIFFERENT
PATCH SIZES AND PROCESSING TIME PER IMAGE.

method mean
IU

f.w.
IU

pixel
acc.

mean
acc.

test time
per image

CNN-RP-240 81.88 90.83 94.35 86.25 1 s
CNN-SLIC-240 80.93 90.42 94.14 85.24 4 s

CNN-RP-180 82.70 91.14 94.50 87.20 2 s
CNN-SLIC-180 82.42 91.08 94.53 86.66 5 s

CNN-RP-120 83.25 90.93 94.16 88.48 4 s
CNN-SLIC-120 82.22 90.54 93.95 86.92 9 s

6. Conclusion

We tackle the problem of automatic seagrass segmen-
tation in underwater images to estimate the sea bottom
coverage. This coverage can be used as a measure to
monitor the change of seagrass meadows over time. Our
machine-learning approach utilizes CNN features extracted
from image patches to classify each patch as seagrass or
background.

We also tested other features in our experiments (Sec-
tion 5.3) and found that CNN features clearly outperform
HOG and LPB features. In order to improve boundaries be-
tween seagrass and background regions we tested superpixel
for image patch generation. But the surprising result of our
experiments was that superpixel work just as well as rect-
angular patches, even though the boundaries of superpixel
patches look much better adjusted to seagrass regions (see
Figure 4) from a human point of view. Our best method (see
Table 4) achieves a mean intersection over union of 83.25%
and a frequency weighted IU of 91.14%.

We further introduce a new dataset of 12684 seagrass
images (Section 3) that is publicly available:
https://enviewfulda.github.io/LookingForSeagrass/

In the future we plan to fine-tune the deep neural
network to seagrass images which should further improve
our method. Furthermore, other networks can be tested for
their performance. A further step will be to test a semantic
segmentation approach using fully convolutional networks
as described for example in [16]. Since our best method
already provides useful results, we plan to implement an
easy-to-use web-based interface for marine biologists. In
terms of the dataset it would be interesting to determine
the human error in order to have an upper bound for the
accuracy a machine could achieve on maximum.
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